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Пояснительная записка 

 

 

«Нерелятивистская квантовая механика» и «Статистиче-

ская физика и термодинамика» относятся к дисциплинам пред-

метной подготовки учителя физики, которые играют решаю-

щую роль в формировании теоретического базиса обучаю-

щихся, позволяющего понимать картину современной физики. 

Особенно большое значение имеет квантовая механика, ко-

торая отметила уже своё 100-летие. Неслучайно 2025 год объяв-

лен по решению ООН Международным годом квантовой науки 

и технологий. Данная всемирная инициатива обусловлена при-

знанием выдающегося вклада квантовой механики и её техно-

логических приложений в развитие науки, образования и куль-

туры. Будущее человеческой цивилизации во многом будет 

определяться дальнейшими успехами реализации квантовых 

технологий.  

Квантовой механике принадлежит ведущая роль в форми-

ровании современной физической картины мира, в обеспечении 

базовой профессиональной подготовки в области физики и со-

здании прочного теоретического фундамента для квалифициро-

ванного преподавания физики в различных образовательных 

учреждениях. Курс квантовой механики позволит не только по-

нимать широкий круг известных сегодня квантовых явлений, но 

и станет основой, которая позволит учителю в дальнейшем ори-

ентироваться в море многочисленных последующих открытий 

квантового мира. Будущий учитель должен ясно понимать, что 

тем, кто сегодня осваивает физику на школьной скамье, в даль-

нейшем предстоит реализовать многие интересные проекты, 
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связанные с квантовыми технологиями. Это обстоятельство 

предъявляет соответствующие требования к подготовке учи-

теля физики.  

Квантовая механика опирается на ряд постулатов и фунда-

ментальных принципов. Постулаты нерелятивистской кванто-

вой механики: 

1. Состояние микрочастицы (или квантовой системы) 

описывается с помощью волновой функции Ψ (или вектора со-

стояния |Ψ〉 в гильбертовом пространстве), которая удовлетво-

ряет трём стандартным условиям: она должна быть конечной, 

однозначной и непрерывной. Квадрат модуля |Ψ|2 определяет 

вероятность обнаружить частицу в данной точке пространства. 

2. Каждой динамической переменной сопоставляется ли-

нейный самосопряжённый оператор.  

3. Вероятность получить собственное значение ℓ𝑛 при 

измерении в состоянии Ψ равна 𝑊𝑛 = |𝑐𝑛|
2, где 𝑐𝑛 – коэффици-

енты в разложении Ψ по ортонормированному базису 

Ψ = ∑𝑐𝑛 Ψ𝑛, 𝑐𝑛 = ⟨Ψ𝑛|Ψ⟩.

𝑛

 

Определением среднего значения механической величины явля-

ется 

𝐿̅ = ∫ Ψ∗

𝑉

 𝐿̂ ΨdV = ⟨Ψ|𝐿̂|Ψ⟩. 

4. Основным уравнением нерелятивистской квантовой ме-

ханики является уравнение Шрёдингера 
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𝑖ℏ
𝜕Ψ

𝜕𝑡
= 𝐻̂Ψ, 

где гамильтониан (оператор энергии) имеет вид 

𝐻̂ = −
ℏ2

2𝑚
∇2 + U. 

Стационарное уравнение Шрёдингера имеет следующий вид 

−
ℏ2

2𝑚
∇2Ψ + UΨ = 𝐸Ψ. 

 К числу фундаментальных принципов квантовой механики 

относятся: 

1.  Принцип суперпозиции состояний. 

2.  Принцип неопределённостей Гейзенберга. 

3.  Принцип дополнительности. 

4.  Принцип соответствия. 

5.  Принцип неразличимости одинаковых микрочастиц. 

6.  Принцип Паули. 

7. Принцип неклонируемости квантовых состояний (теорема 

о запрете клонирования). 

Задачи одномерного движения и движения микрочастицы 

в поле центральных сил требуют умения решать дифференци-

альные уравнения второго порядка в частных производных и 

знания специальных функций, которые обсуждаются в курсе 

«Методы математической физики». При наличии граничных 

условий рассматриваемая задача сводится к задаче Штурма – 

Лиувилля – краевой задаче для обыкновенного дифференциаль-

ного уравнения второго порядка, в которой ищутся собственные 

значения и соответствующие им собственные функции, удовле-

творяющие заданным граничным условиям. Она является част-

ным случаем задачи на собственные значения для операторов. 
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 В описании явлений микромира, как правило, отсутствует 

наглядность, и разобраться в физике атомных масштабов помо-

гает математический формализм. Однако следует понимать, что 

квантовая механика не сводится лишь к математическому аппа-

рату, и, проведя решение задачи, необходимо выяснить физиче-

ский смысл полученных результатов.  

Курс термодинамики и статистической физики построен на 

основе сочетания феноменологического (макроскопического) и 

статистического (микроскопического) описания закономерно-

стей теплового движения структурных видов материи, возника-

ющих в системах, состоящих из большого числа механически 

движущихся частиц. В основе термодинамики лежат фундамен-

тальные законы (4 начала термодинамики), являющиеся обоб-

щением опытных фактов: 

1. Нулевое начало: температура как функция состояния. 

2. Первое начало: закон сохранения и превращения энер-

гии для тепловых явлений. 

3. Второе начало: закон об энтропии (необратимость макро-

скопических процессов в природе). 

4. Третье начало: тепловая теорема Нернста (1906 г.); поведе-

ние энтропии при приближении к абсолютному нулю. Важней-

шее следствие: недостижимость абсолютного нуля температуры. 

Статистическая физика позволяет дать молекулярную ин-

терпретацию термодинамических понятий и законов, и поэтому 

позволяет получить более глубокие знания о многочастичных 

системах. 

Пособие включает перечень теоретических вопросов и типо-

вые задачи по основным разделам нерелятивистской квантовой 

механики и статистической термодинамики. Даётся подробный 
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разбор 20 задач, открывающий путь к самостоятельному реше-

нию большого круга задач, отражающих прикладные аспекты 

квантовой механики и статистической термодинамики. 

В списке рекомендуемой литературы приводятся основные 

учебные пособия по квантовой механике (№1–11) и статистиче-

ской термодинамике (№ 12–19).  
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1 Основные требования к изучению разделов  

«Квантовая механика», «Статистическая физика  

и термодинамика» курса теоретической физики 

 

 

1.1 Место дисциплины (модуля) в структуре  

образовательной программы 

Дисциплина Б1.0.07.15 «Теоретическая физика» (ТФ) от-

носится к обязательным дисциплинам блока 1 «Дисциплины 

(модули)» (модуль «Предметно-методический» профиля «Фи-

зика») основной профессиональной образовательной про-

граммы по профилям «Физика. Математика» и «Физика. Допол-

нительное образование (информатика и робототехника)» в соот-

ветствии с Федеральным государственным образовательным 

стандартом высшего профессионального образования (ФГОС 

ВО) по направлению 44.03.05 Педагогическое образование  

(с двумя профилями подготовки) (бакалавриат). Общая трудо-

емкость дисциплины ТФ составляет 19 зачетных единиц,  

684 часа. Осваивается на 3 – 5 курсах, 5, 6, 7, 8, 9, 10 семестры. 

Изучение дисциплины «Теоретическая физика» основано 

на знаниях, умениях и навыках, полученных при изучении обу-

чающимися следующих дисциплин: «Математический анализ», 

«Алгебра», «Геометрия», «Общая и экспериментальная фи-

зика», «Методы математической физики». 

Курс ТФ включает 7 разделов: классическая механика, 

классическая электродинамика, специальная теория относи-

тельности, квантовая механика, статистическая физика и термо-

динамика, физика твёрдого тела, физика атомного ядра  
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и элементарных частиц. Каждый раздел дисциплины «Теорети-

ческая физика» формирует знания, умения и компетенции, не-

обходимые для освоения последующих разделов данного курса,  

а также следующих дисциплин: «Экспериментальная физика», 

«История физики», «Методика обучения физике», «Астроно-

мия», «Электрорадиотехника» и др. Курс ТФ также является ос-

новой для последующего прохождения учебных и производ-

ственных практик и для подготовки к государственной итоговой 

аттестации. 

 

1.2 Цель изучения дисциплины 

Целью дисциплины является формирование базовой про-

фессиональной подготовки в области физики, формирование 

целостных представлений о современной физической картине 

мира и компетенций в соответствии с требованиями ФГОС ВО, 

овладение основами физики как фундаментальной науки. 

Основные задачи дисциплины «Теоретическая физика»: 

– формирование основных понятий и представлений тео-

ретической физики как фундамента современной науки; 

– ознакомление студентов с основными методами ТФ  

и её практическими приложениями; 

– формирование знаний, позволяющих ориентироваться в 

потоке научной и технической информации и понимать гра-

ницы применимости физических понятий, законов, теорий; 

– ознакомление студентов с наиболее значимыми теоре-

тическими достижениями, заложившими основы ТФ и подняв-

шими физику на новый уровень развития; 

– формирование научного мировоззрения и современного 

физического мышления; 
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– развитие навыков использования физических моделей 

для объяснения природных явлений; 

– подготовка к ведению исследовательской деятельности 

при выполнении выпускных квалификационных работ; 

– создание прочного теоретического фундамента для ква-

лифицированного преподавания физики в учебных заведениях 

разного типа (школах, гимназиях, лицеях); 

– формирование у будущих учителей представления о тео-

ретической физике как о как важнейшей составной части обще-

человеческой культуры; 

– подготовка студентов для продолжения образования в 

магистратуре. 

 

1.3 Планируемые результаты обучения по дисциплине  

(модулю) 

Достижение цели освоения дисциплины (модуля) обеспе-

чивается через формирование следующих компетенций:  

УК-1, ПК-1. 



Таблица 1 

Код и наименование 

компетенции по ФГОС 
Код и наименование индикатора достижения компетенции 

УК-1 cпособен осу-

ществлять поиск, крити-

ческий анализ и синтез 

информации, применять 

системный подход для 

решения поставленных 

задач 

УК-1.1 Демонстрирует знание особенностей системного и критиче-

ского мышления, аргументированно формирует собственное суждение 

и оценку информации, принимает обоснованное решение. 

УК-1.2 Применяет логические формы и процедуры, способен к рефлек-

сии по поводу собственной и чужой мыслительной деятельности. 

УК-1.3 Анализирует источники информации с целью выявления их 

противоречий и поиска достоверных суждений. 

ПК-1 способен осваи-

вать и использовать тео-

ретические знания и 

практические умения и 

навыки в предметной 

области при решении 

профессиональных за-

дач 

ПК-1.1 Знает структуру, состав и дидактические единицы предметной 

области (преподаваемого предмета). 

ПК-1.2 Умеет осуществлять отбор учебного содержания для его реа-

лизации в различных формах обучения в соответствии с требовани-

ями ФГОС ОО. 

ПК-1.3 Демонстрирует умение разрабатывать различные формы учеб-

ных занятий, применять методы, приемы и технологии обучения, в 

том числе информационные. 



Таблица 2 

Код и наимено-

вание индика-

тора достиже-

ния компетен-

ции 

Образовательные результаты по дисциплине 

знать уметь владеть 

1 2 3 4 

УК-1. Спосо-

бен осуществ-

лять поиск, 

критический 

анализ и синтез 

информации, 

применять си-

стемный под-

ход для реше-

ния поставлен-

ных задач  

фундаментальные основы 

теоретической физики, её 

основные понятия, законы 

и модели;  

основные этапы развития 

теоретической физики, её 

актуальные проблемы; 

основные методы ТФ и   её 

практические приложе-

ния; 

 

 

излагать и критически ана-

лизировать базовую ин-

формацию по теоретиче-

ской физике;  

пользоваться теоретиче-

скими основами, поняти-

ями, законами и моделями 

теоретической физики;  

применять математиче-

ские методы теоретиче-

ской физики для решения  

навыками грамотного 

использования языка 

теоретической фи-

зики; способами со-

вершенствования про-

фессиональных зна-

ний и умений путём 

использования инфор-

мационной среды;  

навыками устанавли-

вать содержательные, 

методологические и  
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Продолжение таблицы 2 

1 2 3 4 

 границы применимости 

физических понятий, зако-

нов, теорий 

 

конкретных задач; анали-

зировать основные про-

блемы теоретическая фи-

зики и формулировать соб-

ственную позицию по 

спорным вопросам; пред-

ставлять физическую ин-

формации различными 

способами (в вербальной, 

знаковой, аналитической, 

математической, графиче-

ской, алгоритмической 

формах) 

мировоззренческие 

связи теоретической 

физики со смежными 

научными областями; 

культурой научного 

мышления, позволяю-

щей отсеивать и опро-

вергать псевдонауч-

ные теории 

ПК-1. Спосо-

бен осваивать 

и использовать 

теоретические  

структуру, состав и дидак-

тические единицы теоре-

тической физики как фун- 

  

использовать необходи-

мый  математический ап-

парат для получения  кон- 

 

способами анализа  

научных идей, теорий 

и результатов реше- 
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Продолжение таблицы 2 

1 2 3 4 

знания и прак-

тические уме-

ния и навыки в 

предметной 

области при 

решении про-

фессиональ-

ных задач 

даментальной области со-

временной науки; 

основы теоретической фи-

зики, позволяющие в по-

следующей профессио-

нальной деятельности вы-

страивать учебный про-

цесс с опорой на фунда-

ментальные знания из со-

вокупности всех разделов 

курса ТФ 

кретных теоретических ре-

зультатов;  

давать правильную физи-

ческую интерпретацию по-

лучаемых решений; 

использовать знания курса 

ТФ для анализа содержа-

ния школьных учебников 

физики,  выявления в них 

некорректных утвержде-

ний и теоретических поло-

жений, требующих квали-

фицированного разъясне-

ния 

ния задач в рамках ис-

пользуемых   моделей, 

демонстрирующих по-

нимание основ теоре-

тической физики; 

навыками анализа ре-

зультатов компьютер-

ных экспериментов, 

иллюстрирующих эф-

фекты ТФ 

 



В результате освоения дисциплины студент:  

1. Должен знать:  

– основные теоретические положения классической меха-

ники, классической электродинамики, квантовой механики, 

специальной теории относительности, статистической физики и 

термодинамики, физики твёрдого тела, физики атомного ядра и 

элементарных частиц; 

– основные модели физических явлений, формулируемые 

в рамках перечисленных разделов курса ТФ; 

– основные физические законы и теории соответствующих 

разделов ТФ, а также границы их применимости; 

– физические величины, используемые в указанных разде-

лах физики; 

– математический аппарат, используемый для создания фи-

зических моделей и предсказания результатов экспериментов;  

– основы теоретической физики, позволяющие понимать 

процессы развития фундаментальных областей физики и во-

влечь в этот процесс своих учеников в дальнейшей профессио-

нальной деятельности. 

2. Должен уметь: 

– использовать фундаментальные знания курса ТФ для 

объяснения широкого круга явлений и эффектов, наблюдаемых 

в природе, а также в условиях лабораторного и компьютерного 

эксперимента; 

– решать основные задачи, соответствующие программе 

курса; 

– анализировать физический смысл получаемых резуль-

татов; 
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– применять принцип соответствия при анализе взаимо-

связи между предшествующей и последующей физической 

теорией. 

3. Должен владеть: 

– фундаментальными понятиями, законами и теориями со-

временной и классической физики, 

– навыками анализа физического смысла получаемых тео-

ретических результатов, мысленных и компьютерных экспери-

ментов; 

– основными методами постановки, исследования и реше-

ния задач. 

4. Должен демонстрировать способность и готовность  

– к пониманию основ теоретической физики; 

– к применению результатов освоения дисциплины в про-

фессиональной деятельности; 

– к пониманию места теоретической физики в системе об-

щечеловеческой культуры.  
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2 Содержание разделов «Квантовая механика», 

«Статистическая физика и термодинамика».  

Вопросы к курсовому экзамену по дисциплине  

«Теоретическая физика» 

 

 

Содержание дисциплин «Квантовая механика», «Стати-

стическая физика и термодинамика» соответствует программе 

«Ядро высшего педагогического образования» и включает сле-

дующие разделы: «Основные положения и математический ап-

парат квантовой теории»; «Динамические уравнения и законы 

сохранения»; «Одномерное движение»; «Квантовая частица  

в центрально-симметричном поле»; «Теория возмущений»; 

«Элементы теории излучения»; «Спин электрона»; «Системы 

тождественных частиц»; «Многоэлектронные атомы и моле-

кулы»; «Квантование электромагнитного поля»; «Основные по-

ложения статистической физики»; «Статистическая термодина-

мика»; «Статистическое распределение для системы в термо-

стате и основные применения распределения Гиббса»; «Кванто-

вые статистики идеального газа»; «Равновесие фаз и фазовые 

переходы»; «Элементы теории флуктуаций»; «Основы теории 

неравновесных процессов». 

В соответствии с этими положениями формулируются во-

просы, выносимые на курсовой экзамен по теоретической физике. 

Раздел 1. Квантовая механика 

1.1.  Принцип суперпозиции состояний в квантовой меха-

нике. Вектор состояния. Динамические переменные квантовой 

механики и линейные самосопряжённые операторы. 
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1.2.  Измерения в квантовой механике. Редукция фон Ней-

мана. Неравенство Гейзенберга. Принцип дополнительности.  

1.3.  Запутанные квантовые состояния. Квантовая теле-

портация. 

1.4.  Уравнение Шрёдингера. Стационарные состояния, 

их свойства. 

1.5.  Плотность потока вероятности. Уравнение непрерыв-

ности в квантовой механике. 

1.6.  Обобщение уравнения Гамильтона–Якоби в кванто-

вой механике. Предельный переход к классической механике. 

1.7.  Общие свойства одномерного движения микроча-

стицы. Задача о частице в потенциальной яме. 

1.8.  Квантовый линейный гармонический осциллятор 

(ЛГО). Энергетический спектр и распределение вероятностей 

нахождения ЛГО. Правила отбора. 

1.9.  Движение микрочастицы в поле потенциальной сту-

пеньки. Надбарьерное рассеяние. 

1.10.  Прохождение микрочастицы через потенциальный 

барьер. Туннельный эффект и его практические приложения. 

1.11.  Общие свойства движения микрочастицы в цен-

трально-симметричном поле, законы сохранения.  

1.12.  Собственные значения и собственные функции опе-

ратора орбитального момента. Пространственное квантование 

Угловое распределение плотности вероятности.  

1.13.  Радиальная плотность вероятности и энергетический 

спектр водородоподобного атома. Стационарные состояния 

атома водорода и их описание с помощью квантовых чисел. 

1.14.  Стационарная теория возмущений в отсутствие вы-

рождения. Физический смысл поправок первого и второго  

порядка к невозмущённым уровням энергии. 
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1.15.  Стационарная теория возмущений при наличии вы-

рождения. 

1.16.  Правила отбора для орбитального и магнитного 

квантовых чисел. 

1.17.  Основы статистической теории излучения Эйн-

штейна. Спонтанное и индуцированное излучение. Коэффици-

енты Эйнштейна. 

1.18.  Соотношение неопределённостей для энергии  

и времени. Объяснение естественной ширины энергетических 

уровней в квантовой теории излучения. 

1.19.  Операторы спина. Матрицы Паули.  

1.20.  Спин-орбитальное взаимодействие. Тонкая струк-

тура спектра водородоподобного атома.     

1.21.  Нормальный эффект Зеемана.  

1.22.  Аномальный (сложный) эффект Зеемана.          

1.23.  Принцип неразличимости одинаковых микроча-

стиц. Связь спина со статистикой. Бозоны и фермионы. 

1.24.  Принцип Паули. 

1.25.  Атом гелия. Синглетные и триплетные состояния 

атома гелия. Обменная энергия. Орто- и парагелий. 

1.26.  Молекула водорода. Природа гомеополярной хими-

ческой связи. 

1.27.  Периодическая система химических элементов  

Д.И. Менделеева. 

1.28.  Спин и валентность. 

1.29.  Многоэлектронные атомы. Правила Хунда. 

1.30.  Квантование энергии свободного электромагнит-

ного поля. 
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Раздел 2. Статистическая физика и термодинамика 

2.1. Макро- и микросостояния макроскопической системы. 

Функция статистического распределения в фазовом простран-

стве. Метод ансамблей Гиббса. Термодинамические величины 

как средние по ансамблю. 

2.2. Статистическая природа необратимости макроскопи-

ческих процессов. Статистическое равновесие. Теорема об от-

носительной флуктуации аддитивной функции состояния. 

2.3. Равновесные статистические распределения Гиббса 

(микроканоническое, каноническое, большое каноническое). 

2.4. Статистическая сумма (статистический интеграл)  

и её связь с термодинамическими параметрами (свободная энер-

гия, энтропия, давление, средняя энергия). 

2.5. Статистическое определение энтропии. Энтропия  

и информация. 

2.6. Распределение Максвелла – Больцмана (вывод на ос-

нове канонического распределения Гиббса). 

2.7. Распределение Ферми – Дирака. 

2.8. Распределения Бозе – Эйнштейна. 

2.9. Условия перехода от квантовой к классической стати-

стике. Критерий вырождения. 

2.10. Термодинамическое определение температуры. Ну-

левое начало термодинамики. Абсолютный нуль температуры 

как температура, соответствующая наименьшему возможному 

значению энергии.  

2.11. Молекулярно-кинетическое определение темпера-

туры и границы его применимости.  

2.12. Отрицательные абсолютные температуры и инверсия 

населённости энергетических уровней. Примеры систем с отри-

цательной температурой. 
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2.13. Теплота и работа, их микроскопический смысл. Пер-

вый закон термодинамики. 

2.14. Уравнения основных термодинамических процессов.  

2.15. Второй закон термодинамики для обратимых и необ-

ратимых процессов. Основное термодинамическое тождество. 

Статистический смысл и границы применимости второго 

начала термодинамики. 

2.16. Закон возрастания энтропии в замкнутой системе. 

2.17. Цикл Карно. Теоремы Карно. 

2.18. Термодинамические потенциалы (внутренняя энер-

гия, свободная энергия, энтальпия, термодинамический потен-

циал Гиббса) и их физический смысл.  

2.19. Химический потенциал. 

2.20. Третий закон термодинамики (тепловая теорема 

Нернста). Формулировка Планка. Статистическое обоснование 

III начала термодинамики.  Свойства вещества вблизи абсолют-

ного нуля. Недостижимость абсолютного нуля. 

2.21. Теорема о равномерном распределении энергии  

по степеням свободы в классической статистике. 

2.22. Классическая теория теплоемкости идеальных газов 

и её затруднения. Квантовая теория теплоёмкости двухатомных 

идеальных газов. 

2.23. Свободные электроны в металлах как вырожденный 

ферми-газ. 

2.24. Равновесное тепловое излучение как фотонный газ. 

Законы излучения абсолютно чёрного тела. 

2.25. Явление конденсации Бозе – Эйнштейна. 

2.26. Фазовые переходы первого и второго рода. Класси-

фикация Эренфеста. Правило фаз Гиббса. Уравнение  
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Клапейрона – Клаузиуса. Уравнения Эренфеста для скачка теп-

лоёмкости при фазовом переходе второго рода. 

2.27. Реальные газы. Уравнение Ван-дер-Ваальса. Физиче-

ский смысл постоянных Ван-дер-Ваальса. 

2.28. Эффект Джоуля – Томсона как следствие отклонения 

газов от идеальности. Температура инверсии.   

2.29. Флуктуации в макроскопических системах (броунов-

ское движение; молекулярное рассеяние света; тепловые флук-

туации в электрических цепях). 

2.30. Кинетическое уравнение Больцмана в теории нерав-

новесных процессов. Приближение времени релаксации. 
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3 Примеры задач, включаемых в курсовой экзамен 

по дисциплине «Теоретическая физика» 

 

 

Раздел 1 Квантовая механика 

 

Одномерное движение 

1.1. Микрочастица находится в одномерной прямоуголь-

ной потенциальной яме шириной ℓ. Определить, в каких точках 

ямы, принадлежащих интервалу 0 < 𝑥 < ℓ, плотность вероятно-

сти нахождения частицы  в основном и первом возбуждённом 

состояниях одинакова? Вычислить плотность вероятности для 

этих точек. Решение проиллюстрировать графически. 

1.2. Электрон находится в бесконечно глубокой потенци-

альной яме шириной ℓ. Вычислить вероятность того, что элек-

трон, находящийся в возбуждённом состоянии (𝑛 = 2), будет 

обнаружен в средней трети ямы.  

1.3.  Электрон в одномерном прямоугольном потенциаль-

ном ящике находится в основном состоянии с энергией 10 эВ. 

Определите ширину этого ящика и покажите, что эта величина 

согласуется с соотношением неопределённостей Гейзенберга 

для координаты и импульса. 

1.4. Определить среднее значение проекции скорости 𝑣̅𝑥 

частицы в одномерной  прямоугольной потенциальной яме в ос-

новном состоянии. 

1.5. Найти волновые функции и уровни энергии частицы 

в сферически симметричной потенциальной яме радиусом r0  

с идеально отражающими стенками (U = 0 при   r ≤ r0, U →∞ при 
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r > r0 ). Рассмотреть случай   s - состояния, в операторе Лапласа 

учесть только радиальную часть: 

∇2Ψ =
1

𝑟
 
𝜕2

𝜕𝑟2
 (𝑟Ψ). 

1.6.  Найти наиболее вероятные положения линейного 

гармонического осциллятора: а) в основном состоянии; б) в пер-

вом возбуждённом состоянии; в) во втором возбуждённом со-

стоянии. Решение проиллюстрировать графически.  

1.7. Используя неравенство Гейзенберга для координаты 

и импульса, определить минимально возможное значение энер-

гии ЛГО. Чем обусловлено существование энергии нулевых ко-

лебаний?  

1.8.  Используя связь энергии 𝐸 с неопределённостью ко-

ординаты ∆𝑥 для линейного гармонического осциллятора 

(ЛГО),  правило отбора и ненулевые матричные элементы коор-

динаты  

𝑥𝑛−1,𝑛 = ⟨Ψ𝑛−1|𝑥|Ψ𝑛⟩ = 𝑥0√
𝑛

2
  , 

𝑥𝑛+1,𝑛 = ⟨Ψ𝑛+1|𝑥|Ψ𝑛⟩ = 𝑥0√
𝑛 + 1

2
 , 

определить энергетический спектр ЛГО.  

1.9. Показать, что для потенциального барьера произволь-

ной формы коэффициенты прохождения и отражения частиц  

с данной энергией не зависят от того, с какой стороны частицы 

падают на барьер. 

1.10. Во сколько раз надо сузить прямоугольный потенци-

альный барьер, чтобы вероятность прохождения его протоном  

и электроном была одинаковой?  
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Движение микрочастицы в центрально-симметричном поле 

1.11. Определить нормированную угловую волновую 

функцию  𝑌1,1 и угловую плотность вероятности | 𝑌1,1|
2
при   

ℓ = 𝑚 = 1 (𝑝-состояние).   Построить полярную диаграмму. 

Вычислить момент импульса и его проекцию на ось Z, обсудить 

аналогию с теорией Бора. 

1.12. Найти нормированную угловую волновую функцию   

𝑌1,0  и угловую плотность вероятности | 𝑌1,0|
2
 при ℓ = 1,𝑚 = 0 

(𝑝-состояние). Построить полярную диаграмму. Вычислить мо-

мент импульса и его проекцию на ось Z, обсудить аналогию с 

теорией Бора. 

1.13. Определить нормированную  угловую часть волновой 

функции 𝑌2,1 и угловую плотность вероятности | 𝑌2,1|
2
 в случае 

ℓ = 2,𝑚 = 1 для  одного из  𝑑-состояний. Построить полярную 

диаграмму. Вычислить момент импульса и его проекцию на ось 

Z, обсудить аналогию с теорией Бора. 

1.14. Определить  нормированную угловую волновую 

функцию  𝑌2,2 и угловую плотность вероятности | 𝑌2,2|
2
 в случае 

ℓ = 𝑚 = 2. Построить полярную диаграмму. Вычислить мо-

мент импульса и его проекцию на ось Z, обсудить аналогию  

с теорией Бора. 

1.15. Электрон в атоме водорода находится в основном со-

стоянии.  Определить энергию электрона; возможные значения 

момента импульса (К), его проекции (𝐾𝑧) на ось Z, проекции 

магнитного момента (𝜇𝑧), наиболее  вероятное расстояние элек-

трона от ядра атома. 

1.16. Электрон в атоме водорода находится в состоянии 3d. 

Определить набор квантовых чисел, характеризующих электрон 
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в данном состоянии; возможные значения момента импульса 

(К), его проекции (𝐾𝑧) на ось Z, проекции магнитного момента 

(𝜇𝑧), наиболее вероятные направления нахождения электрона 

относительно оси Z (на основе анализа полярных диаграмм). 

1.17. Вычислить среднее значение кинетической энергии  

и среднюю квадратичную скорость 𝑣𝑛 = √𝑣𝑛
2̅̅ ̅  электрона в атоме 

водорода в основном состоянии. 

1.18. Вычислить наиболее вероятное расстояние 2𝑝- и 3𝑑- 

электронов от ядра в водородоподобном атоме.  

1.19. Вычислить для 1𝑠 - электрона в атоме водорода 

наиболее вероятное расстояние от ядра 𝑟вер. и вероятность пре-

бывания электрона в области  𝑟 < 𝑟вер. 

1.20. Вычислить для электрона, находящегося в 1𝑠 – состо-

янии в атоме водорода, среднее значение расстояния 𝑟̅ от ядра, 

𝑟2̅̅ ̅ и (∆𝑟)2̅̅ ̅̅ ̅̅ ̅. Результаты выразить через радиус первой боровской 

орбиты 𝑎. 

 

Теория возмущений и её приложения 

1.21. Найти поправку первого порядка к  энергии частицы 

в одномерном потенциальном ящике размером 𝑎, если энергия 

возмущения имеет вид 

𝑊(𝑥) = {
−𝑏,   0 ≤ 𝑥 ≤

𝑎

2

+𝑏,   
𝑎

2
≤ 𝑥 ≤ 𝑎 .

 

1.22. Вычислить поправку первого порядка малости к невоз-

мущенным уровням энергии и к волновым функциям электрона 

в центрально-симметричном поле при включении однородного 

магнитного поля 𝐻⃗⃗ ,  направленного вдоль оси z.    
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1.23. Линейный гармонический осциллятор с зарядом е по-

мещен в однородное электрическое поле напряженностью ℰ, 

направленное вдоль оси колебаний. Рассматривая действие 

электрического поля как возмущение, найти поправки первого 

и второго порядка к энергии осциллятора. 

1.24. Найти поправку к энергии основного состояния ли-

нейного гармонического осциллятора 𝐸0
(1)

в первом приближе-

нии теории возмущений  за счёт ангармонических членов в по-

тенциальной энергии 𝑊̂ = 𝛼𝑥3 + 𝛽𝑥4, где α и β – постоянные.  

1.25. Найти изотопический сдвиг уровней энергии водоро-

доподобного атома в первом порядке теории возмущений, учи-

тывая движение ядра. 

1.26.  Атом водорода находится в однородном электриче-

ском поле с напряжённостью ℰ , направленной вдоль оси Z. 

Найти расщепление уровня энергии, характеризующегося глав-

ным квантовым числом n = 2 (эффект Штарка). 

1.27.  Атом водорода, находящийся в состоянии 2 p, поме-

щен в полость с равновесным излучением. При какой темпера-

туре вероятности спонтанного и вынужденного излучения бу-

дут одинаковыми? 

1.28.  Используя коэффициент Эйнштейна для спонтанных 

квантовых переходов 𝐴𝑚𝑛, вычислить отнесённую к единице 

времени вероятность спонтанного перехода 2𝑝 → 1𝑠 и время 

жизни в состоянии 2р  для атома водорода. 

1.29.  Проверить справедливость правила отбора для орби-

тального квантового числа (∆ℓ = ±1) на примере 𝑠, 𝑝 и 𝑑-состо-

яний,  вычислив матричные элементы координаты 𝑧𝑠𝑝, 𝑧𝑠𝑑 , 𝑧𝑝𝑑 

(ограничиться случаем 𝑚 = 0). 
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1.30. Найти поправку первого порядка к основному 

уровню энергии водородоподобного атома, обусловленную ко-

нечными размерами ядра, считая ядро равномерно заряженным 

шариком радиуса 𝑟0 ≈ 10−12см. Радиус первой боровской ор-

биты 𝑎 ≈ 10−8см.  В качестве оператора возмущения принять  

𝑊̂ = {
−

𝑍𝑒2

𝑟0
(
3

2
−

1

2

𝑟2

𝑟0
2)

0 при 𝑟 > 𝑟0.

+
𝑍𝑒2

𝑟
 , 𝑟 ≤ 𝑟0 

Волновая функция основного состояния имеет вид: 

Ψ0 = 2√
𝑍3

𝑎3
    𝑒− 

𝑍
𝑎𝑟 ∙

1

√4𝜋
  . 

Оцените относительный сдвиг основного уровня энергии 
 

 0
1

1

E

E
 

при Z ~ 100. 

Спин и системы тождественных частиц 

1.31. Найти возможные состояния электрона, имеющего 

главное квантовое число 𝑛 = 3. 

1.32.  Найти максимальное число электронов в атоме, име-

ющих следующие одинаковые квантовые числа: а) 𝑛, ℓ,𝑚;   б) 

𝑛, ℓ ;   в) 𝑛. 

1.33.  Найти выражения для операторов повышения   

𝑆̂+ = 𝑆̂𝑥 + 𝑖𝑆̂𝑦 и понижения   𝑆̂− = 𝑆̂𝑥 − 𝑖𝑆̂𝑦 проекции спина  

в матричной форме;  определить их действие на волновые функ-

ции Ψ↑ = (1
0
) и Ψ↓ = (0

1
). 

1.34.  Найти расстояние между отклоненными пучками в 

опыте Штерна и Герлаха для водорода. Скорость движения  
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атомов 𝑣 = 2500 м с,⁄  градиент напряженности магнитного 

поля 
𝜕𝐻

𝜕𝑧
= 20000 Эрстед см,⁄   длина пути  L = 10 см.  

1.35.  Вычислить магнитный момент атома водорода в ос-

новном состоянии.  

1.36.  Постройте   схему   возможных квантовых переходов 

между термами  2 P 3/2    и   
2 S 1/2   в слабом магнитном поле и 

вычислите смещение частоты  ∆𝜔 𝜔𝐿⁄  спектральных линий в 

аномальном эффекте Зеемана. 

1.37.  Найти скалярное произведение спинов двух частиц 

(𝑆 1 ∙ 𝑆 2) в триплетном и синглетном состояниях. Спин частицы 

равен ℏ 2⁄ . 

1.38.  Зная экспериментальные значения энергии парасо-

стояния 𝐸пара = −58,37 эВ и ортосостояния 𝐸орто = −59,16 эВ  

атома гелия с электронной конфигурацией 1S12S1, найти обмен-

ную А и кулоновскую К  энергии  взаимодействия электронов.  

1.39.  Используя правила Хунда, определить полный мо-

мент импульса (𝐽), суммарный орбитальный момент (𝐿), сум-

марный спиновый момент (𝑆) электронной системы атома, ос-

новной терм и g-фактор (множитель Ланде) для следующих си-

стем: ион меди  𝐶𝑢2+(3𝑑9); атом рутения 𝑅𝑢(4𝑑75𝑠1); атом пла-

тины 𝑃𝑡(5𝑑96𝑠1); ион иттербия  𝑌𝑏3+(4𝑓13); ион берклия 

𝐵𝑘2+(5𝑓86𝑑1). 

1.40.  Доказать, что все механические моменты (орбиталь-

ный, спиновый и полный) у целиком заполненных электронных 

оболочек равны нулю. 
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Раздел 2 Статистическая физика (СФ) и термодинамика  

 

Основные понятия и принципы СФ.  

Каноническое распределение Гиббса 

2.1. Определить фазовую траекторию линейного гармони-

ческого осциллятора (ЛГО) в отсутствие трения. 

2.2. Определить фазовые траектории одномерного движе-

ния материальных точек в поле силы тяжести и проверить спра-

ведливость теоремы Лиувилля. 

2.3. Определить фазовую траекторию частицы при наличии 

силы трения, пропорциональной скорости: 𝐹тр. = −𝜇𝑣 = −𝜇𝑞 .̇  

2.4. Вычислить статистический интеграл 𝑧 для линейного 

гармонического осциллятора в классическом и квазиклассиче-

ском случаях. 

2.5. Записать классическое каноническое распределение 

по энергиям для ЛГО и определить его среднюю энергию.  

2.6. Вычислить статистический интеграл 𝑧  для идеального 

классического газа, состоящего из N частиц. 

2.7. Вычислить статистическую сумму 𝑧 для квантового 

ЛГО. Показать, что в области высоких температур имеет место 

предельный переход к квазиклассическому случаю. 

2.8. Учитывая связь между давлением газа и свободной энер-

гией 𝐹, а также связь свободной энергии  со статистическим ин-

тегралом 𝑧, показать, что давление 𝑝 идеального газа определя-

ется через статистический интеграл  следующим выражением: 

𝑝 =
𝑘𝑇

𝑧
(
𝜕𝑧

𝜕𝑉
)

𝑇
. 

Используя статистический интеграл для идеального классиче-

ского газа, состоящего из N частиц, получить уравнение состоя-

ния идеального газа. 
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2.9. Показать, что относительная среднеквадратичная 

флуктуация энергии идеального газа, описываемого канониче-

ским распределением Гиббса, определяется выражением 

√〈(∆𝐸)2〉

〈𝐸〉
=

√𝑘𝐶𝑉  𝑇

〈𝐸〉
~

1

√𝑁
 . 

2.10. Учитывая связь энтропии с распределением вероят-

ностей микросостояний 

𝑆 = −𝑘 ∑𝑊𝑖 ∙ ℓ𝑛𝑊𝑖 ,

𝑁

𝑖=1

 

где  𝑊𝑖 – вероятность 𝑖 − го  состояния, 𝑁 −число всех возмож-

ных состояний системы,  исследовать её поведение в двухуров-

невой системе двумя способами: 

1) применив каноническое распределение Гиббса; 

2) используя кинетическое уравнение  

𝑑𝑊𝑖

𝑑𝑡
= 𝜔(1 − 2𝑊𝑖), 

где  𝜔 – частота перескоков частиц между энергетическими 

уровнями (𝜔 = 𝑐𝑜𝑛𝑠𝑡). 

 

Распределение Максвелла – Больцмана 

2.11. Найти среднюю скорость максвелловского распреде-

ления. Вычислить эту скорость для молекул водорода и азота 

при Т=300 К. 

2.12. Найти среднеквадратичную скорость молекул иде-

ального газа, подчиняющихся распределению Максвелла. Оце-

нить её для молекул азота и кислорода при Т=300 К. 

2.13. Определить число частиц ∆𝑁 𝑁⁄ , скорости которых за-

ключены в интервале от нуля до наиболее вероятной скорости. 
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2.14. Какая часть молекул газа имеет скорость, заключен-

ную между половинным и удвоенным значениями наиболее ве-

роятной скорости, т.е. между 1 2⁄ 𝑣в и 2 𝑣в? 

2.15.  Определить число частиц ∆𝑁 𝑁⁄ , имеющих скорости 

меньше средней. 

2.16. Какая часть молекул водорода при температуре 300 К 

обладает скоростями в интервале от 1800 до 1810 м/с?  

2.17. Согласно эффекту Доплера, фотон с частотой 𝜔0, ис-

пускаемой источником, воспринимается приёмником излуче-

ния как фотон с частотой  

𝜔 = 𝜔0 (1 +
𝑣𝑥

𝑐
), 

где 𝑐 − скорость света, 𝑣𝑥 − проекция относительной скорости 

движения источника и приёмника. Определить вид функции 

распределения 𝜌(𝜔) фотонов с частотой 𝜔, воспринимаемой 

приёмником; полуширину доплеровского уширения спектраль-

ной линии ∆𝜔 и относительное доплеровское уширение спек-

тральной линии ∆𝜔 𝜔0⁄ . Масса излучающего атома 𝑚~100 𝑚𝑝, 

температура газа 𝑇~300 𝐾. Какое значение может иметь этот 

эффект для астрофизики? 

2.18.  Найти число молекул азота, сталкивающихся с пло-

щадкой в 1 см2 за 1 сек при нормальных условиях, если справед-

ливо максвелловское распределение частиц по скоростям. 

2.19. Установить связь между давлением идеального газа и 

средним квадратом скорости молекул. Получить уравнение со-

стояния идеального газа. 

2.20. Идеальный классический газ находится в цилиндре 

радиуса R, вращающемся с угловой скоростью ω. Установить 

вид функции распределения Больцмана и её зависимость от рас-

стояния r до оси цилиндра. 
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2.21. Определить число частиц dN на расстоянии z от Земли 

в столбе воздуха сечением S и высотой dz. Высота всего столба 

воздуха равна H. Считать, что вблизи поверхности Земли уско-

рение свободного падения g=const. 

2.22. Для определения числа Авогадро Перрен исследовал 

распределение по высоте взвешенных в жидкости зёрен гумми-

гута в однородном поле силы тяжести. Он нашёл, что при тем-

пературе 293 К при поднятии вверх на высоту в 100 мкм число 

взвешенных частиц уменьшается в два раза. Частицы гуммигута 

имели   диаметр 0.3 ·10-4 см; плотность жидкости на 0,2 г/см 3 

меньше плотности частиц. Определить по этим данным значе-

ние числа Авогадро. 

2.23. Какая доля молекул кислорода земной атмосферы мо-

жет преодолеть гравитационное поле Земли при температуре 

300 К?   

2.24. Определить среднее значение потенциальной энергии 

линейного гармонического осциллятора в состоянии статистиче-

ского равновесия, подчиняющегося распределению Больцмана. 

2.25. Определить среднюю высоту частиц газа, находяще-

гося в столбе высотой L в поле силы тяжести. 

2.26. Найти среднюю потенциальную энергию молекулы 

идеального газа, находящегося в центрифуге радиуса R, вращаю-

щейся с постоянной  угловой скоростью ω. (Указание: из эле-

мента объёма в цилиндрической системе координат  

𝑑𝑉 = 𝑟𝑑𝑟𝑑𝜑𝑑𝑧 выделить радиальную часть 𝑑𝑉𝑟 = 𝑟𝑑𝑟;   

𝑑𝑊 = 𝐴𝑒−
𝑈

 𝑘𝑇𝑟𝑑𝑟).  

2.27. Вычислить   наиболее вероятную энергию  𝜀в молекул 

в идеальном газе. Показать, что 𝜀в ≠
1

2
 𝑚𝑣в

2. 
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2.28. Какая часть молекул идеального газа имеет кинетиче-

скую энергию поступательного движения выше средней кине-

тической энергии 𝜀 ̅ =
3

2 
 𝑘𝑇? 

2.29. Вычислить поляризацию диэлектрика, состоящего  

из линейных молекул с постоянным дипольным моментом р⃗ , 

при помещении его в однородное электрическое поле напряжён-

ностью 𝐸⃗ . В качестве равновесного статистического распреде-

ления использовать распределение Больцмана. 

2.30. Доказать теорему  классической статистики:  

«В системе заряженных частиц, помещённых во внешнее 

магнитное поле, в состоянии статистического равновесия 

отсутствует магнитный момент» (теорема Бора – ван-Леевен – 

Терлецкого). 

 

Квантовая статистика идеального газа 

2.31. Установить зависимость внутренней энергии равно-

весного излучения от температуры, рассматривая его как фотон-

ный газ, подчиняющийся статистике Бозе – Эйнштейна. Опре-

делить микроструктуру постоянной Стефана – Больцмана. 

2.32. Определить температуру бозе-конденсации в случае 

изотопа гелия – 4, если известно, что спин атомов Не4

2   равен 

нулю, а молярный  объём  составляет 27,6 см 3. 

2.33. Найти полное число фотонов в 1 см3 равновесного из-

лучения при температуре 1000 К. 

2.34. Определить температурную зависимость средней 

энергии и  теплоёмкости бозе-газа при температуре, меньшей его 

температуры бозе-конденсации 𝑇0. Согласуется ли поведение 

теплоёмкости  при  𝑇 → 0 с третьим началом термодинамики? 
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2.35. Определить температурную зависимость энтропии 

вырожденного бозе-газа. Согласуется ли поведение энтропии  

при 𝑇 → 0 с третьим началом термодинамики? 

2.36. Определить температурную зависимость давления 

бозе-газа при температуре, меньшей его температуры БЭК.  По-

чему в этой области температур вырожденный бозе-газ анало-

гичен насыщенному пару? 

2.37. Концентрация электронов в меди равна 8,5 ∙1028 1/м3. 

При какой температуре происходит переход газа от невырож-

денного к вырожденному при данной концентрации? Устано-

вить, является ли газ вырожденным с данной концентрацией 

при комнатной температуре. 

2.38. Определить температуру вырождения электронного  

газа в белом карлике, масса которого близка к массе Солнца 

(М⨀ = 2 ∙ 1033г), а радиус 𝑅  сравним с радиусом Земли. 

2.39. Какова вероятность заполнения электронами в ме-

талле  энергетического уровня, расположенного на 0,01 эВ ниже 

уровня Ферми, при  температуре   200 К?  

2.40. Найти долю свободных электронов в металле при 0 К, 

кинетическая энергия которых больше половины максимальной.  

2.41. Найти полную энергию и среднюю энергию одной ча-

стицы при T=0 для ультрарелятивистского электронного газа. 

Энергия частицы связана с импульсом 𝑝 соотношением 𝜀 = с𝑝 

(с − скорость света). 

2.42. Показать, что для вырожденного ферми-газа имеет 

место уравнение состояния  

𝑃𝑉 =
2

3
𝐸 ̅, 
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которое внешне совпадает с аналогичным уравнением для иде-

ального классического газа. В чём заключается существенное 

различие этих уравнений? 

 

Циклические процессы  

2.43. Определить к.п.д. цикла Стирлинга, состоящего из 

двух изотерм и двух изохор (рис. 1), для 1 моля идеального газа. 

Сравнить его с к.п.д. цикла Карно с теми же температурами 

21 TиT . 

2.44. Определить к.п.д. цикла Ленуара (рис. 2), состоящего 

из изохорного (1-2), адиабатного (2-3) и изобарного (3-1) про-

цессов для 1 моля идеального газа. Выразить к.п.д. сначала че-

рез температуры 
321 ,, ТТТ , а затем через параметр цикла 

1

2

P

P
 .  

 

Рисунок 1 – Цикл Стирлинга 

 

Рисунок 2 – Цикл Ленуара 
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2.45. В двигателе внутреннего сгорания, работающего по 

циклу Отто (рис. 3), горючая смесь, вошедшая в цилиндр, адиа-

батно сжимается (1-2); воспламенённая искрой, изохорно сго-

рает (2-3); адиабатно расширяется (3-4) и выбрасывается в ат-

мосферу (4-1).   Работа производится не за счёт теплоты извне, 

а за счёт внутренней энергии рабочего вещества (горючей 

смеси). Определить к.п.д. двигателя и выразить его сначала че-

рез  Т1, Т2, Т3, Т4, а затем через  параметр цикла 
2

1

V

V
  (степень 

сжатия). 

 

 

Рисунок 3 – Цикл Отто 

 

2.46. Двигатель внутреннего сгорания, работающий по 

циклу Дизеля (рис. 4) , включает следующие процессы: адиабат-

ное сжатие атмосферного воздуха 1-2, изобарное расширение  

2-3 (впрыскивание горючей смеси и её сгорание),   адиабатиче-

ское расширение 3-4, изохорное охлаждение 4-1. Определить 

к.п.д. сначала через Т1, Т2, Т3, Т4,, а затем через параметры цикла: 

степень сжатия 
2

1

V

V
  и степень предварительного расширения 

4

3

V

V
 . Учесть, что для 1 моля идеального газа 

P

dP
R

T

dTc
dS

p
 . 
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Рисунок 4 – Цикл Дизеля                         

 

2.47. Найти коэффициент полезного действия тепловой ма-

шины, цикл которой состоит из изобары, изохоры и политропы 

(рис. 5). В качестве рабочего тела используется идеальный газ с 

молярной теплоёмкостью при постоянном объёме 𝐶𝑉 =
3

2
𝑅. Рас-

ширение газа в процессе 1-2 происходит по закону 𝑝 = 𝛼𝑉, где 

𝛼 − постоянная величина. Отношение максимальной темпера-

туры в цикле к минимальной равно 4. 

 

Рисунок 5 – К задаче 2.47   

 

2.48. Определить к.п.д. обратимого цикла Карно с равно-

весным излучением в качестве рабочего вещества, учитывая, 

что энтропия равновесного излучения  
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𝑆 =
4

3
𝜎𝑇3𝑉 

и уравнение адиабаты для равновесного излучения имеет вид 

𝑇3𝑉 = 𝑐𝑜𝑛𝑠𝑡. 

Согласуется ли полученный результат с первой теоремой 

Карно? 

2.49. На рисунке 6 изображён замкнутый процесс, содер-

жащий изотерму 1 и две пересекающиеся адиабаты (2 и 3). Иде-

альный газ забирает у термостата теплоту (Q>0) и изотермиче-

ски расширяется. За счёт этой теплоты за цикл производится по-

ложительная работа, что не противоречит первому началу тер-

модинамики. Возможен ли такой процесс?  Ответ обосновать. 

 

 

Рисунок 6 – К задаче 2.49 

 

 2.50. На рисунке 7 изотерма DEF дважды пересекает 

одну адиабату ABC. Для замкнутого процесса теплота  

𝑄 = ∮𝑇 𝑑𝑆.  Так как вдоль линии АВС  𝑑𝑆 = 0, а вдоль линии 

DEF 𝑇 = 𝑐𝑜𝑛𝑠𝑡, то 
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∮𝑇 𝑑𝑆 = 𝑇 ∫ 𝑑𝑆 = 𝑇(𝑆𝐹 − 𝑆𝐷)

𝐷𝐸𝐹

. 

Так как точки D и F принадлежат одной адиабате, то  𝑆𝐷 = 𝑆𝐹    

и работа 𝐴 = 0. 

Но, с другой стороны,   𝐴 ≠ 0 , так как площадь цикла DEFBD 

отлична от нуля. Как разрешить это противоречие? 

 

Теп 

 

Рисунок 7 – К задаче 2.50 

 

Энтропия 

2.51. Вычислить энтропию 1 моля идеального газа, учиты-

вая основное термодинамическое тождество и уравнение состо-

яния идеального газа. 

2.52. Найти изменение энтропии ∆𝑆 при смешении двух 

равных масс одного и того же идеального газа, находящихся до 

смешения при одинаковом давлении p и различных  температу-

рах Т1 и Т2.   Учесть, что для 1 моля идеального газа     

𝑆 = 𝐶𝑉𝐶 + 𝑅ℓ𝑛
𝑉

𝑁
+ 𝑆0 = 𝐶𝑝ℓ𝑛𝑇 − 𝑅ℓ𝑛𝑝 + 𝑆0

′ .  

2.53. Вычислить изменение энтропии ∆𝑆 при смешении 

двух равных масс одного и того же идеального газа,  
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находящихся до смешения при одинаковой температуре 𝑇 и раз-

личных давлениях 𝑝1 и 𝑝2.  

2.54. Равновесное излучение, занимая первоначально 

объём V, адиабатически расширяется без совершения работы  

в полость с объёмом 15V. Определить, во сколько раз изменится 

температура и энтропия в этом процессе.  

2.55. Определить изменение ∆𝑆 энтропии при изотермиче-

ском расширении кислорода массой 𝑚 = 10 г от объёма 𝑉1 = 25 л 

до объёма 𝑉2= 100 л. 

2.56. Во сколько  раз изменится вероятность конечного со-

стояния  двух тел, приведенных в соприкосновение, если 

начальные температуры тел равны соответственно 27 С∘   

и 28 С∘ , а количество теплоты, передаваемое при тепловом кон-

такте,  ∆𝑄 = 10−6Дж. (Не забудьте про принцип Больцмана!). 

2.57. Газ А объёмом 3м3 диффундирует в другой газ В с тем 

же объёмом 3 м3 при постоянном общем давлении  𝑝 = 2 атм  

и температуре 0 С∘ . Вычислить прирост энтропии, считая газ 

идеальным. В нормальных условиях при 𝑝 = 2 атм  объём 

1моля составляет 0,0224 м3. 

2.58. Показать, что в системе, содержащей N независимых 

частиц со спином 1 2⁄ , наиболее вероятным является состояние 

молекулярного хаоса (число частиц с противоположным спи-

ном одинаково). Определить энтропию, исходя из принципа 

Больцмана, и показать, что:  

1) в состоянии молекулярного хаоса энтропия макси-

мальна и   равна  𝑘𝑁 ∙ 0,69;        

2) избыток спинов одного направления приводит к умень-

шению энтропии, т.е. к уменьшению беспорядка. 
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2.59. Пусть газ занимает сначала левую половину свобод-

ного объёма сосуда. Согласно законам термодинамики, он дол-

жен расшириться и занять весь объём, причём это расширение 

будет сопровождаться возрастанием энтропии. С точки зрения 

статистической физики, такое поведение газа является наиболее 

вероятным. Однако не исключается возможность того, что газ 

будет не расширяться, а сжиматься, в результате чего частицы 

газа вновь окажутся в левой половине сосуда. Найти, какое 

время потребуется, чтобы в результате молекулярного движе-

ния все N молекул снова собрались в левой половине с вероят-

ностью, близкой к 1, например, равной 0.9. Согласуется ли по-

лученный результат с законом возрастания энтропии в замкну-

той системе? 

 

Рисунок 8 – К задаче 2.59 

2.60. Демон Максвелла. В 1871 г. Максвелл в работе «Тео-

рия теплоты» написал: «Представим себе существо, способно-

сти которого настолько изощрены, что оно может следить  

за каждой молекулой на её пути и в состоянии делать то, что  

в настоящее время для нас невозможно. Предположим, что име-

ется сосуд, разделённый на 2 части А и В перегородкой с неболь-

шим отверстием и что существо, которое может видеть отдель-

ные молекулы, открывает и закрывает это отверстие так, чтобы 

дать возможность только более быстрым молекулам перейти  

из А  в  В и только более медленным перейти из В в А (рис. 9). 
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Это существо, таким образом, без затраты работы повысит тем-

пературу в части В и понизит температуру в части А вопреки  

II началу термодинамики». Необходимо разрешить этот пара-

докс, изгнав демона, т.е. «спасти» второе начало термодина-

мики! 

 

Рисунок 9 – Парадокс Максвелла 

2.61. Парадокс Гиббса о скачке энтропии при смешении га-

зов. Вычислить изменение энтропии Δ𝑆  при изотермическом 

смешении двух различных газов, разделённых вначале перего-

родкой (рис. 10), занимающих объёмы   𝑉1 и 𝑉2 и имеющих тем-

пературу 𝑇 (𝜈1 и 𝜈2 −число молей каждого газа). Покажите, что  

Δ𝑆 определяется выражением 

Δ𝑆 = 𝜈1𝑅ℓ𝑛[(𝑉1 + 𝑉2)/𝑉1] + 𝜈2𝑅ℓ𝑛[(𝑉1 + 𝑉2)/𝑉2]. 

В частном случае равных количеств газов (𝜈1 = 𝜈2 = 𝜈 =

𝑁 𝑁𝐴⁄ ), находящихся до смешения в одинаковых объёмах 

(𝑉1 = 𝑉2 = 𝑉), изменение энтропии после смешения, очевидно, 

будет иметь вид 

Δ𝑆 = 2𝜈𝑅ℓ𝑛2.                                                          (∗) 

Из данной формулы следует, что возрастание энтропии при сме-

шении двух идеальных газов зависит только от числа молей, но 

не зависит от их природы. При переходе от разных газов  
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к случаю одинаковых газов возникает парадокс Гиббса: после 

удаления перегородки никакого термодинамического процесса 

в системе не происходит, и поэтому увеличения энтропии не 

должно быть, однако, согласно (*), энтропия возрастает. Необ-

ходимо разрешить данный парадокс.  

  

Рисунок 10 – К парадоксу Гиббса 

2.62. Найти изменение энтропии при переходе водорода 

массой 𝑚 = 6 г от состояния 𝑉1 = 20 л, 𝑃1 = 1.5 ∙ 105Па к  со-

стоянию 𝑉2 = 60 л, 𝑃2 = 1 ∙ 105Па.  

  

Газ Ван-дер-Ваальса 

2.63. Получить калорическое уравнение состояния газа 

Ван-дер-Ваальса. Вычислить внутреннюю энергию 2 кмоль  

кислорода, занимающих объём 0,01 м3 при температуре 300 К. 

Постоянная Ван-дер-Ваальса для кислорода  𝑎 = 1,36 ∙

105 Н ∙ м4 кмоль2.⁄  

2.64. В баллоне объёмом V= 8 л находится кислород мас-

сой m = 0,3 кг при температуре Т=300 К. Используя уравнение 

Ван-дер-Ваальса, определить: 

а) какую часть объёма сосуда составляет собственный объём 

молекул газа; 

б) отношение внутреннего давления к давлению газа на стенки 

сосуда. 
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2.65. Гелий занимает объём 100 см3 при давлении 108 Н/м2. 

Найти температуру газа в двух случаях: 

а) рассматривая его как идеальный газ; 

б) рассматривая его как реальный газ, подчиняющийся уравне-

нию Ван-дер-Ваальса. 

Во сколько раз отличаются полученные результаты? 

2.66. Определить температуру инверсии и изменение тем-

пературы ∆𝑇  в эксперименте Джоуля –Томсона с азотом при  

𝑇 =300 К и перепаде давления   ∆𝑝 = −0,5 атм = −5,05 ∙

104 Н м2.⁄  Постоянные Ван-дер-Ваальса 𝑎 = 1,36 ∙

105 Н ∙ м4 кмоль2⁄ , 𝑏 = 39.6 ∙ 10−3 м3 кмоль⁄ . Теплоёмкость 

𝐶𝑝 = 1,039 ∙ 103 Дж кг ∙ К.⁄  

 

Фазовые переходы  

2.67. Считая удельную теплоту перехода 𝜆 постоянной ве-

личиной, показать, что давление  насыщенного пара изменяется 

с изменением температуры по экспоненциальному закону. 

2.68. Под каким давлением вода будет кипеть при 95 С∘ ? 

Удельная теплота испарения воды 2258,4 Дж/г. 

2.69. Одно из возможных объяснений лёгкости скольжения 

коньков по льду, предложенное более 100 лет назад   Дж. Тин-

далом и О. Рейнольдсом, основано на использовании уравнения 

Клапейрона – Клаузиуса  для фазовых переходов I рода. Точка 

плавления льда с повышением давления понижается. Поэтому 

считается, что под давлением острого конька лёд плавится при 

температуре t <0 С∘ ,  образуя жидкую смазку, которая и обеспе-

чивает  лёгкость скольжения конька по льду. Оцените, какое 

давление необходимо приложить ко льду, чтобы понизить его 
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температуру на 1 К. Удельный объём льда при 0 С∘  составляет 

1.091 см3/г, воды  -  1 см3/г. Теплота фазового перехода 𝜆=335 

Дж/г. Сформулируйте вывод из проведённых вычислений. 

2.70. Исследовать фазовый переход образца из нормаль-

ного (n) в сверхпроводящее (s) состояние в магнитном поле. 

Температурная зависимость критического магнитного поля  

в сверхпроводниках (рис. 11) имеет вид 

𝐻𝑐(𝑇) = 𝐻0 [1 − (
𝑇

𝑇𝑐
)
2

], 

где 𝐻𝑐 −напряжённость критического поля, выше которого 

сверхпроводимость разрушается, 𝑇𝑐 −критическая температура 

сверхпроводящего перехода. 

 

 

Рисунок 11 − Температурная зависимость критического  

магнитного поля в сверхпроводниках 

Дифференциал термодинамического потенциала Гиббса 

для магнетика во внешнем магнитном поле 𝐻 равен 

𝑑𝐺 = −𝑆𝑑𝑇 − 𝑀𝑑𝐻, 

где 𝑀 − намагниченность. В случае сверхпроводника имеет ме-

сто эффект Мейсснера (выталкивание магнитного поля из  
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образца при 𝐻 < 𝐻𝑐), поэтому для сверхпроводящего состояния 

𝑀𝑠 = −
1

4𝜋
𝐻. Получить основное уравнение термодинамики 

сверхпроводников 

𝐺𝑛 (𝐻𝑐 , 𝑇) − 𝐺𝑆 (0, 𝑇) =
𝐻𝑐

2

8𝜋
 . 

На этой основе, учитывая, что 𝑆 = −(
𝜕𝐺

𝜕𝑇
)
𝐻

, показать, что 

разность энтропий сверхпроводящего и нормального состояния 

определяется выражением 

𝑆𝑆 (0, 𝑇) − 𝑆𝑛(0, 𝑇) =
𝐻𝑐

4𝜋

𝑑𝐻𝑐

𝑑𝑇
 . 

Установить, какая фаза является более упорядоченной в области 

0 < 𝑇 < 𝑇𝑐: сверхпроводящая или нормальная. Определить теп-

лоту фазового перехода из нормального состояния в сверхпро-

водящее и показать, что переход в сверхпроводящее состояние 

сопровождается выделением тепла. 
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4 Примеры решения задач  

по разделу «Квантовая механика» 

 

 

1.1. Показать, что для потенциальной ступеньки произ-

вольной формы автоматически выполняется соотношение 

𝑅(𝐸) + 𝐷(𝐸) = 1, 

где 𝑅 − коэффициент отражения, 𝐷 −коэффициент прохожде-

ния частиц. 

РЕШЕНИЕ 

Рассмотрим барьер наиболее общего вида, когда поле 𝑈(𝑥) 

имеет вид потенциальной ступеньки (рис. 12) 

𝑈(𝑥) → {
0 при 𝑥 → −∞,
𝑈0 при 𝑥 → +∞.

 

 

Рисунок 12 – Потенциальная ступенька 

Для определённости полагаем, что падающие частицы 

движутся в положительном направлении оси 𝑥. 

 Волновая функция удовлетворяет уравнению Шрёдингера 

−
ℏ2

2𝑚
∇2Ψ + UΨ = 𝐸Ψ                              (1.1) 

и имеет следующие асимптотики при 𝑥 → ±∞: 



51 
 

Ψ(𝑥) ≈ {
 𝐴1𝑒

𝑖𝑘𝑥 + 𝐵1𝑒
−𝑖𝑘𝑥 , 𝑥 → −∞,

𝐴2𝑒
𝑖𝑘1𝑥 ,                            𝑥 → +∞.

                  (1.2) 

Падающая волна характеризуется амплитудой 𝐴1 = 1 (по-

скольку вероятность нахождения частиц слева от барьера 

|𝐴1|
2 = 1), отражённая волна – амплитудой 𝐵1,  прошедшая в 

область существования барьера – амплитудой 𝐴2. Волновые 

числа 𝑘 и 𝑘1 в каждой из двух областей имеют вид 

𝑘 = √
2𝑚𝐸

ℏ2
 ,   𝑘1 = √

2𝑚(𝐸 − 𝑈0 )

ℏ2
 . 

Запишем уравнение, комплексно сопряжённое уравнению (1.1): 

 −
ℏ2

2𝑚
∇2Ψ∗ + UΨ∗ = 𝐸Ψ∗.                                  (1.3) 

Умножая уравнение (1.1) слева на Ψ∗, а (1.3) - на Ψ и вычитая 

почленно друг из друга, находим  

−
ℏ2

2𝑚
(Ψ∗ ∇2Ψ − Ψ ∇2Ψ∗ ) = 0,       

Ψ∗Ψ" − ΨΨ∗′′ = 0, 

или 

 
𝑑

𝑑𝑥
(Ψ∗ Ψ′ − ΨΨ∗′

) = 0. 

Отсюда следует, что 

Ψ∗ Ψ′ − ΨΨ∗′
= 𝑐𝑜𝑛𝑠𝑡.                            (1.4) 

Коэффициенты отражения и прозрачности определяются следу-

ющим образом: 

𝑅 =
 𝑗отр

𝑗пад
= |𝐵1|

2, 𝐷 =
𝑗прош

𝑗пад
= |𝐴2|

2
𝑘1

𝑘
 .      (1.5) 

Для их вычисления необходимо вычислить значения левой ча-

сти соотношения (1.4) при 𝑥 → ±∞ с помощью выражений (1.2). 
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Записывая левую часть (1.4) для 𝑥 → −∞, а правую – для 𝑥 →

+∞, будем иметь: 

(𝑒−𝑖𝑘𝑥 + 𝐵1𝑒
𝑖𝑘𝑥)𝑖𝑘(𝑒𝑖𝑘𝑥 − 𝐵1𝑒

−𝑖𝑘𝑥) − 

−(𝑒𝑖𝑘𝑥 + 𝐵1𝑒
−𝑖𝑘𝑥)𝑖𝑘(−𝑒−𝑖𝑘𝑥 + 𝐵1𝑒

𝑖𝑘𝑥) = 

= 𝐴2𝑒
−𝑖𝑘1𝑥𝑖𝑘1𝐴2𝑒

𝑖𝑘1𝑥 − 𝐴2𝑒
𝑖𝑘1𝑥(−𝑖𝑘1)𝐴2𝑒

−𝑖𝑘1𝑥 . 

Раскрывая скобки и сокращая обе части этого выражения на 

одинаковые экспоненты, получим 

𝐵1
2 +

𝑘1

𝑘
 𝐴2

2 = 1.  

Таким образом, 𝑅(𝐸) + 𝐷(𝐸) = 1, что и требовалось доказать. 

 

1.2. Найти энергетический спектр микрочастицы в потен-

циальной яме (рис. 13) 

𝑈 = {

∞       при 𝑥 ≤ 0,
0 при 0 < 𝑥 < 𝑙,
𝑈0          при 𝑥 ≥ ℓ.

 

 

Рисунок 13 – Яма конечной глубины 
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РЕШЕНИЕ 

Поскольку при 𝑥 < 0 потенциальная энергия обращается 

в бесконечность, частица не может проникнуть в эту область. 

Поэтому задача сводится к отысканию волновой функции при 

𝑥 > 0. 

Запишем уравнение Шрёдингера в областях I и II: 

𝑑2Ψ1

𝑑𝑥2
+

2𝑚𝐸

ℏ2
Ψ1 = 0,                                    (1.6) 

𝑑2Ψ2

𝑑𝑥2
+

2𝑚(𝐸 − 𝑈0 )

ℏ2
Ψ2.                              (1.7) 

Рассмотрим два случая. 

1. 𝐸 > 𝑈0 .  

В области I уравнение Шрёдингера имеет вид  

Ψ1
′′ + 𝑘1

2Ψ1 = 0, где 𝑘1
2 =

2𝑚𝐸

ℏ2
.                    (1.8) 

В области II  

Ψ2
′′ + 𝑘2

2Ψ2 = 0,      где 𝑘2
2 =

2𝑚(𝐸 − 𝑈0 )

ℏ2
.            (1.9) 

Решения для каждой из этих областей можно записать следую-

щим образом: 

Ψ1 = A1sin𝑘1𝑥 + 𝐵1𝑐𝑜𝑠𝑘1𝑥,                              (1.10) 

Ψ2 = A2sin𝑘2(𝑥 − ℓ) + 𝐵2𝑐𝑜𝑠𝑘2(𝑥 − ℓ).            (1.11) 

Используя граничное условие Ψ1(0) = 0, находим, что 𝐵1 = 0. 

Условия непрерывности функции и ее первой производной в 

точке 𝑥 = ℓ 

Ψ1(ℓ) = Ψ2(ℓ), 

Ψ1
′(ℓ) = Ψ2

′(ℓ) 
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приводят к следующим выражениям 

A2 =
A1𝑘1

𝑘2
 𝑐𝑜𝑠𝑘1ℓ, 𝐵2 = A1sin𝑘1ℓ .                  (1.12) 

Эти условия всегда могут быть выполнены, поэтому энергетиче-

ский спектр при инфинитном движении является непрерывным. 

2.  𝐸 < 𝑈0 .  

Уравнение Шрёдингера для области I остается без измене-

ний. Чтобы записать его для области II, учтем, что в рассматри-

ваемом случае 

𝑘2 = √−
2𝑚(𝑈0 − 𝐸)

ℏ2
= 𝑖𝑘,                          (1.13) 

где  

𝑘 = √
2𝑚(𝑈0 − 𝐸)

ℏ2
 .                                       (1.14) 

Таким образом, с учетом того, что волновое число 𝑘2 оказыва-

ется мнимым, уравнение Шрёдингера в области II запишется в 

виде 

Ψ2
′′ − 𝑘2Ψ2 = 0 .                                (1.15) 

Решениями этого уравнения для областей I и II являются функ-

ции 

Ψ1 = A1sin𝑘1𝑥,                                 (1.16) 

   Ψ2 = С2𝑒
i𝑘2𝑥 =С2𝑒

−k𝑥.                        (1.17) 

Условия «сшивания» функций (1.16) и (1.17) имеют вид 

A1sin𝑘1ℓ = С2𝑒
−kℓ,  A1𝑘1𝑐𝑜𝑠𝑘1ℓ = −𝑘С2𝑒

−kℓ. 
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Разделив почленно второе уравнение на первое, получим усло-

вие квантования энергии: 

𝑐𝑡𝑔𝑘1ℓ = −
𝑘

𝑘1
 .                                      (1.18) 

Решение этого уравнения находится графическим методом. За-

метим, что  

sin𝑘1ℓ =
1

√1 + 𝑐𝑡𝑔2𝑘1ℓ
= √

𝐸

𝑈0 
=

ℏ

√2𝑚ℓ2𝑈0 

𝑘1ℓ. 

Введем следующее обозначение: 𝑦 = 𝑘1ℓ, тогда уравнение 

(1.18) принимает вид 

siny =
ℏ

√2𝑚ℓ2𝑈0 

𝑦.                               (1.19) 

Его решениями являются точки пересечения синусоиды 𝑧 =

siny  с прямой  

𝑧 =
ℏ

√2𝑚ℓ2𝑈0 
𝑦. При этом следует выбирать только те точки, ко-

торые согласуются со знаком в уравнении (1.18), т.е. те, которые 

принадлежат четным четвертям (рис. 14).  

 

Рисунок 14 – Графическое решение уравнения (1.19) 
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В результате получится конечное число значений 𝑦𝑛, которым 

соответствует конечное число собственных значений энергии  

𝐸𝑛 =
ℏ2𝑦𝑛

2

2𝑚ℓ2
 .                                           (1.20) 

В случае ямы малой глубины может оказаться, что ни одного 

собственного значения энергии не существует. 

Из решения (1.17) следует, что имеется экспоненциально 

убывающая с ростом x, но конечная вероятность нахождения 

частицы с энергией 𝐸 < 𝑈0 в области 𝑥 > 𝑙. Этот эффект озна-

чает возможность прохождения микрочастицы через потенци-

альный барьер. 

Из рассмотренной задачи вытекают следующие выводы: 

1. При инфинитном (неограниченном) движении микрочастицы 

ее энергетический спектр является непрерывным. При ограни-

ченном (финитном) движении энергетический спектр является 

дискретным. 

2. В потенциальной яме конечной глубины имеется конечное 

число собственных значений энергии. Если глубина ямы слиш-

ком мала, то возможна ситуация, когда ни одного собственного 

значения энергии не существует. 

3. В случае потенциальной ямы конечной глубины существует 

отличная от нуля вероятность проникновения частицы в об-

ласть, где 𝐸 < 𝑈0 . 

1.3. Найти коэффициент прозрачности потенциального ба-

рьера, для которого потенциальная энергия имеет вид (рис.15) 

  

𝑈 = {

0           при 𝑥 < 0,
𝑈1 при 0 ≤ 𝑥 ≤ ℓ,
𝑈2             при 𝑥 > ℓ.
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Энергия падающей частицы, движущейся в положительном 

направлении оси 𝑥,  удовлетворяет условию  𝑈2 < 𝐸 < 𝑈1. 

 

Рисунок 15 – Потенциальный барьер сложной формы 

 

РЕШЕНИЕ 

Запишем уравнение Шрёдингера для каждой из трех областей: 

𝜕2Ψ1

𝜕𝑥2
+

2𝑚𝐸

ℏ2
Ψ1 = 0, 𝑥 < 0,                      

𝜕2Ψ2

𝜕𝑥2
+

2𝑚(𝐸 − 𝑈1)

ℏ2
Ψ2 = 0, 0 ≤ 𝑥 ≤ ℓ,     

𝜕2Ψ3

𝜕𝑥2
+

2𝑚(𝐸 − 𝑈2)

ℏ2
Ψ3 = 0, 𝑥 > ℓ.                    

Решение этих уравнений имеет вид: 

Ψ1 = 𝐴1𝑒
𝑖𝑘1𝑥 + 𝐵1𝑒

−𝑖𝑘1𝑥 , 

Ψ2 = А2𝑒
𝑖𝑘2𝑥 + 𝐵2𝑒

−𝑖𝑘2𝑥 , 

Ψ3 = А3𝑒
𝑖𝑘3𝑥 , 

где волновые числа  

𝑘1 = √
2𝑚𝐸

ℏ2
 ,  𝑘2 = √

2𝑚(𝑈1 − 𝐸)

ℏ2
 , 𝑘3 = √

2𝑚(𝐸 − 𝑈2)

ℏ2
.  
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Условия непрерывности волновой функции вместе с её произ-

водной на границах барьера  

{
Ψ1(0) = Ψ2(0)

Ψ1
′(0) = Ψ2

′(0)
  , 

{
Ψ2(ℓ) = Ψ3(ℓ)

Ψ2
′(ℓ) = Ψ3

′(ℓ)
 

приводят к следующим уравнениям 

{
𝐴1 + 𝐵1 = 𝐴2 + 𝐵2

𝑖𝑘1(𝐴1 − 𝐵1) = −𝑘2(𝐵2 − 𝐴2)
                       (1.21) 

{
𝐴2𝑒

𝑘2ℓ + 𝐵2𝑒
−𝑘2ℓ = 𝐴3𝑒

𝑖 𝑘3ℓ

𝑘2(𝐴2𝑒
𝑘2ℓ − 𝐵2𝑒

−𝑘2ℓ) = 𝑖𝑘3𝐴3𝑒
𝑖𝑘3ℓ.

                (1.22) 

Исключая из этих уравнений величины 𝐴2, 𝐵1и 𝐵2, находим 

связь между коэффициентами 𝐴3 и 𝐴1. Для упрощения расчётов 

учтём, что неравенство 𝑘1ℓ ≫ 1 всегда можно считать выпол-

ненным и что можно пренебречь величинами, пропорциональ-

ными 𝑒−𝑘2ℓ по сравнению с величинами, пропорциональными 

𝑒𝑘2ℓ. Тогда находим для отношения 𝐴3/𝐴1: 

𝐴3

𝐴1
=

4𝑖𝑘1𝑘2

(𝑖𝑘1 − 𝑘2)(𝑘2 − 𝑖𝑘3)
𝑒−𝑘2ℓ𝑒𝑖𝑘3ℓ. 

Соответственно коэффициент прохождения равен: 

𝐷 =
|А3|

2

|А1|
2

=
16𝑘1

2𝑘2
2

(𝑘1
2 + 𝑘2

2)(𝑘2
2 + 𝑘3

2)
𝑒−2𝑘2ℓ .            (1.23) 

1.4. Получить правила отбора и отличные от нуля матрич-

ные элементы координаты для линейного гармонического ос-

циллятора (ЛГО). 
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РЕШЕНИЕ 

Волновые функции стационарных состояний ЛГО  

имеют вид 

Ψ𝑛 = 𝐶𝑛𝑒− 
𝜉2

2 ∙ 𝐻𝑛(𝜉),                              (1.24) 

где  

𝐶𝑛 =
1

√2𝑛𝑛! 𝑥0√𝜋 

 , 𝑥0 = √
ℏ

𝑚𝜔
 , 𝜉 =

𝑥

𝑥0
 ,                (1.25) 

𝐻𝑛(𝜉) = (−1)𝑛𝑒𝜉2 𝑑𝑛

𝑑𝜉𝑛
(𝑒−𝜉2

)                      (1.26) 

– полиномы Эрмита – Чебышёва, являющиеся решениями диф-

ференциального уравнения второго порядка 

𝐻𝑛
′′ − 2𝜉𝐻𝑛

′ + 2𝑛𝐻𝑛 = 0. 

Вначале установим рекуррентное соотношение между по-

линомами (1.26). Найдем производную 

𝑑𝑛+1

𝑑𝜉𝑛+1
(𝑒−𝜉2

) =
𝑑𝑛

𝑑𝜉𝑛

𝑑

𝑑𝜉
(𝑒−𝜉2

) = −2
𝑑𝑛

𝑑𝜉𝑛
(𝑒−𝜉2

∙ 𝜉) =

= −2(𝑒−𝜉2
∙ 𝜉)

(𝑛)
= −2(𝑢 ∙ 𝑣)(𝑛). 

Учитывая формулу Лейбница 

(𝑢 ∙ 𝑣)(𝑛) = 𝑢(𝑛)𝑣0 + 𝑛𝑢(𝑛−1)𝑣(1) +
𝑛(𝑛−1)

2
𝑢(𝑛−2)𝑣(2) + ⋯+

+𝑢(0)𝑣(𝑛) , 

получим 

(𝑒−𝜉2
)
(𝑛+1)

= −2 [(𝑒−𝜉2
)
(𝑛)

∙ 𝜉 + 𝑛(𝑒−𝜉2
)
(𝑛−1)

∙ 1] . 
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Умножая обе части этой формулы на (−1)(𝑛+1)𝑒𝜉2
, получаем 

рекуррентное соотношение, связывающее между собой поли-

номы 𝐻𝑛+1, 𝐻𝑛, 𝐻𝑛−1 : 

𝐻𝑛+1 = 2𝜉𝐻𝑛 − 2𝑛𝐻𝑛−1.                           (1.27) 

Используя (1.27), вычислим следующее произведение: 

𝑥Ψ𝑛 = 𝑥0𝐶𝑛𝑒
− 

𝜉2

2  𝜉𝐻𝑛 = 𝑥0𝐶𝑛𝑒
− 

𝜉2

2 (
1

2
𝐻𝑛+1 + 𝑛𝐻𝑛−1) = 

= 𝑥0𝐶𝑛𝑒
− 

𝜉2

2 (
1

2

Ψ𝑛+1

𝐶𝑛+1
𝑒

𝜉2

2 + 𝑛
Ψ𝑛−1

𝐶𝑛−1
𝑒

𝜉2

2 ) . 

Учитывая (1.25), находим, что  

𝐶𝑛+1 =
1

√2𝑛+1(𝑛 + 1)! 𝑥0√𝜋 

 , 𝐶𝑛−1 =
1

√2𝑛−1(𝑛 − 1)! 𝑥0√𝜋 

 . 

 

Поэтому 

𝑥Ψ𝑛 = 𝑥0 (√
𝑛 + 1

2
 Ψ𝑛+1 + √

𝑛

2
 Ψ𝑛−1).                                     

Полученная формула позволяет вычислить отличные от нуля 

матричные элементы: 

⟨Ψ𝑚|𝑥|Ψ𝑛⟩ = 𝑥0 (√
𝑛 + 1

2
 + ⟨Ψ𝑚|Ψ𝑛+1⟩ + √

𝑛

2
 ⟨Ψ𝑚|Ψ𝑛−1⟩) . 

Учитывая условие ортонормировки волновых функций 

⟨Ψ𝑚|Ψ𝑛+1⟩ = 𝛿𝑚,𝑛+1 ,  ⟨Ψ𝑚|Ψ𝑛−1⟩ = 𝛿𝑚,𝑛−1, 

получаем 
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⟨Ψ𝑚|𝑥|Ψ𝑛⟩ = 𝑥0 (√
𝑛 + 1

2
𝛿𝑚,𝑛+1 + √

𝑛

2
𝛿𝑚,𝑛−1) .      (1.28) 

Из (1.28) следует, что ненулевые матричные элементы коорди-

наты определяются значениями 𝛿 -символа Кронекера. Они будут 

отличны от нуля в двух случаях: 

1) 𝑚 = 𝑛 + 1, если 𝛿𝑚,𝑛+1 = 1; 

2) 𝑚 = 𝑛 − 1, если 𝛿𝑚,𝑛−1 = 1 . 

Обозначив 𝑚 = 𝑛′, приходим к правилам отбора для кванто-

вого числа 𝑛: 

𝑛′ = 𝑛 − 1, 𝑛′ = 𝑛 + 1,                          (1.29) 

или 

     Δ𝑛 = ±1                                     (1.30) 

Правила отбора (1.29), (1.30) означают, что для осциллятора 

возможны квантовые переходы только между соседними энер-

гетическими уровнями (рис. 16). При этом отличные от нуля 

матричные элементы определяются выражениями 

𝑥𝑛−1,𝑛 = ⟨Ψ𝑛−1|𝑥|Ψ𝑛⟩ = 𝑥0√
𝑛

2
  ,                     (1.32) 

𝑥𝑛+1,𝑛 = ⟨Ψ𝑛+1|𝑥|Ψ𝑛⟩ = 𝑥0√
𝑛 + 1

2
  .              (1.33)  
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Рисунок 16 – Правила отбора, разрешающие переходы только 

между соседними уровнями энергии 

 

1.5. Определить уровни энергии и радиальную часть вол-

новой функции частицы массы 𝑚0 в бесконечно глубокой сфе-

рически симметричной потенциальной яме радиусом a, когда 

потенциальная энергия описывается выражением 

𝑈(𝑟) = {
0, если 𝑟 ≤ 𝑎,
∞, если 𝑟 > 𝑎 .

 

 

РЕШЕНИЕ 

Волновая функция частицы содержит радиальную и угловую 

части: 

Ψ(r, θ, φ) = 𝐴R(r) ∙  Y(θ, φ), 

где 𝐴 − нормировочная константа. Радиальная функция R(r) 

удовлетворяет радиальному уравнению Шрёдингера 

−
ℏ2

2𝑚0
(
𝜕2𝑅

𝜕𝑟2
+

2

𝑟

𝜕R

𝜕𝑟
) +

ℏ2ℓ(ℓ + 1)

2𝑚0𝑟
2

𝑅 + 𝑈(𝑟)𝑅 = 𝐸𝑅.     (1.34) 

При 𝑟 ≤ частица движется свободно, 𝑈(𝑟) = 0, с определённым 

значением орбитального квантового числа ℓ и орбитального мо-

мента. 
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   Введём обозначение 

𝜌 = √
2𝑚0𝐸

ℏ2
∙  𝑟 = 𝑘𝑟. 

Тогда 

𝜕𝜌

𝜕𝑟
= 𝑘,

𝜕𝑅

𝜕𝑟
=

𝜕𝑅

𝜕𝜌

𝜕𝜌

𝜕𝑟
= 𝑘

𝜕𝑅

𝜕𝜌
,

𝜕2𝑅

𝜕𝑟2
= 𝑘2

𝜕2𝑅

𝜕𝜌2
 . 

Поэтому радиальное уравнение принимает вид 

𝜕2𝑅

𝜕𝜌2
+

2

𝜌

𝜕R

𝜕𝜌
−

ℓ(ℓ + 1)

𝜌2
𝑅 + 𝑅 = 0.            (1.35) 

1. Рассмотрим случай 𝑠 −состояния (ℓ = 0). 

В этом случае уравнение (1.35) имеет вид 

𝜕2

𝜕𝜌2
(𝜌𝑅) = −𝜌𝑅. 

Общее решение этого уравнения: 

𝜌𝑅 = 𝐴𝑠𝑖𝑛𝜌 + 𝐵𝑐𝑜𝑠𝜌, 

откуда следует, что 

𝑅 = 𝐴
𝑠𝑖𝑛𝜌

𝜌
+ 𝐵

𝑐𝑜𝑠𝜌

𝜌
. 

Поскольку второе слагаемое не удовлетворяет условию конеч-

ности волновой функции 

𝑐𝑜𝑠𝜌

𝜌
→ ∞ при 𝜌 → 0, 

решением являются функции 

𝑅 = 𝐴
𝑠𝑖𝑛𝜌

𝜌
= 𝐴

𝑠𝑖𝑛𝑘𝑟

𝑘𝑟
 .                        (1. 36) 

Для нахождения уровней энергии используем граничное 

условие  𝑅(𝑎) = 0, поскольку при 𝑟 ≥ 𝑎 частица не может про-

никнуть в область бесконечно большой потенциальной энергии, 
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𝐴
𝑠𝑖𝑛𝑘𝑎

𝑘𝑎
= 0. 

Отсюда следует: 

𝑘𝑎 = 𝜋𝑛, 𝐸 =
ℏ2𝑘2

2𝑚0
 , 

что соответствует энергии свободно движущейся частицы с вол-

новым вектором 𝑘. 

 Таким образом, в случае 𝑠 −состояния энергетический 

спектр имеет вид 

𝐸𝑛 =
𝑛2ℎ2

8𝑚0𝑎
2
 , 𝑛 = 1,2,3, …,                        (1.37) 

совпадающий с уровнями энергии частицы в прямоугольной 

бесконечно глубокой потенциальной яме шириной 𝑎. 

2. Перейдём к случаю ℓ ≠ 0. 

Вначале определим функцию 𝑅 при 𝜌 → 0. Учитывая, что  

ℓ(ℓ + 1)

𝜌2
→ ∞ при 𝜌 → 0,  

можно пренебречь последним членом в левой части уравнения 

(1.35). Приходим к уравнению 

𝜕2𝑅

𝜕𝜌2
+

2

𝜌

𝜕R

𝜕𝜌
−

ℓ(ℓ + 1)

𝜌2
𝑅 = 0.                 (1.38)  

Его решением является степенная функция 

𝑅 = 𝜌𝛾 .                                                 (1.39) 

Подставляя (1.39) в (1.38) и вычисляя соответствующие произ-

водные, находим, что 𝛾 удовлетворяет уравнению 

𝛾(𝛾 + 1) = ℓ(ℓ + 1), 

имеющему два корня 

𝛾1 = ℓ,   𝛾2 = −(ℓ + 1). 



65 
 

Второй корень не удовлетворяет требованию конечности волно-

вой функции: 

1

𝜌ℓ+1
→ ∞ при 𝜌 → 0.  

Поэтому на малых расстояниях от центра ямы остаётся решение 

 

𝑅0 = 𝜌ℓ.                                              (1.40) 

Теперь определим функцию 𝑅 при 𝜌 ≠ 0. 

Сделаем подстановку 

𝑅(𝜌) = 𝜌ℓ ∙ 𝑓ℓ(𝑟),                                  (1.41) 

где 𝑓ℓ(𝑟) − пока не известная функция. Подставляя (1.41) в 

уравнение (1.35), получим уравнение для функции 𝑓ℓ 

𝜕2𝑓ℓ
𝜕𝜌2

+
2

𝜌
(ℓ + 1)

𝜕𝑓ℓ
𝜕𝜌

+ 𝑓ℓ = 0.                      (1.42) 

Сделаем замену в этом уравнении: ℓ → ℓ + 1,  получим 

𝜕2𝑓ℓ+1

𝜕𝜌2
+

2

𝜌
(ℓ + 2)

𝜕𝑓ℓ+1

𝜕𝜌
+ 𝑓ℓ+1 = 0.               (1.43) 

Продифференцировав (1.42) по 𝜌 и сравнивая получившееся 

при этом уравнение с (1.43), находим рекуррентное соотноше-

ние между функциями 𝑓ℓ+1 и 𝑓ℓ: 

𝑓ℓ+1 =
1

𝜌

𝜕𝑓ℓ
𝜕𝜌

 .                                     (1.44) 

Эта формула позволяет производить последовательное вычис-

ление функций: 
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𝑓1 =
1

𝜌

𝜕𝑓0
𝜕𝜌

 , 𝑓2 =
1

𝜌

𝜕𝑓1
𝜕𝜌

  и т. д. 

Учитывая, что функция 𝑓0 нам уже известна и, согласно (1.36), 

имеет вид 

𝑓0 =
𝑠𝑖𝑛𝜌

𝜌
 , 

можно найти последующие функции: 

𝑓1 =
1

𝜌

𝜕

𝜕𝜌
(
𝑠𝑖𝑛𝜌

𝜌
) , 𝑓2 = (

1

𝜌

𝜕

𝜕𝜌
)
2

(
𝑠𝑖𝑛𝜌

𝜌
)  и т. д. 

Соответствующие радиальные функции, согласно (1.41),  будут 

иметь вид 

𝑅1 =
𝜕

𝜕𝜌
(
𝑠𝑖𝑛𝜌

𝜌
) , 𝑅2 = 𝜌2 (

1

𝜌

𝜕

𝜕𝜌
)
2

(
𝑠𝑖𝑛𝜌

𝜌
) ,…  

Обобщая полученные результаты, находим следующее выраже-

ние для радиальных функций при  произвольных значениях ℓ: 

𝑅ℓ = 𝜌ℓ (
1

𝜌

𝜕

𝜕𝜌
)
ℓ

(
𝑠𝑖𝑛𝜌

𝜌
).                           (1.45) 

Вычислив по формуле (1.45) несколько первых функций, заме-

чаем, что они совпадают со сферическими функциями Бесселя 

(с точностью до нормировочного множителя): 

𝐽0 =
𝑠𝑖𝑛𝑥

𝑥
 ,   𝐽1 =

𝑠𝑖𝑛𝑥

𝑥2
−

𝑐𝑜𝑠𝑥

𝑥
 ,   𝐽2 = (

3

𝑥3
−

1

𝑥
) 𝑠𝑖𝑛𝑥 −

3𝑐𝑜𝑠𝑥

𝑥2
 .  (1.46) 

Для получения энергетического спектра используем граничные 

условия 
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𝑅ℓ(𝑎) = 0 , 𝜌(𝑎) = √
2𝑚0𝐸

ℏ2
 𝑎 = 𝑥𝑛ℓ,          (1.47) 

где 𝑥𝑛ℓ, −корни сферической функции Бесселя ℓ − го порядка, 

𝑛 −главное квантовое число, т.е. номер корня в порядке возрас-

тания его величины. Имеем 

𝐸𝑛ℓ =
ℏ2𝑥𝑛ℓ

2

2𝑚0𝑎
2
 .                                          (1.48) 

Состояния 𝑛ℓ кратко обозначают малой латинской буквой, со-

ответствующей значению ℓ, перед которой ставится число, ука-

зывающее значение 𝑛. Порядок их расположения следующий: 

1𝑠, 1𝑝, 1𝑑, 2𝑠, 1𝑓, 2𝑝, 1𝑔, 2𝑑, 1ℎ, 3𝑠, 2𝑓, … 

Такое обозначение принято для уровней энергии нуклонов в 

атомном ядре. 

 В таблице 3 приведены значения корней 𝑥𝑛ℓ сферических 

функций Бесселя для первых шести состояний. Пользуясь таб-

лицей 3, можно вычислить энергии частицы с помощью фор-

мулы (1.48). 

Таблица 3 – Значение корней сферических функций Бесселя 

Состояние 𝑥𝑛ℓ Состояние 𝑥𝑛ℓ 

1𝑠 3,142 2𝑠 6,283 

1𝑝 4,493 1𝑓 6,988 

1𝑑 5,763 2𝑝 7,725 

 

В качестве примера рассмотрим состояние 

𝑅1 =
𝑠𝑖𝑛𝑥

𝑥2
−

𝑐𝑜𝑠𝑥

𝑥
 . 

Наложим граничное условие 𝑅1(𝑎) = 0, получим 
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𝑠𝑖𝑛𝑥

𝑥2
=

𝑐𝑜𝑠𝑥

𝑥
,   

или 

𝑡𝑔𝑥 = 𝑥. 

Данное уравнение можно решить графически. Корни этого 

уравнения изображаются точками пересечения прямой 𝑦 = 𝑥 и  

кривой 𝑦 = 𝑡𝑔𝑥 (рис. 17). Первый корень 𝑥 = 0 не подходит, 

второй – в соответствии с таблицей 3   равен 4,493. 

 

 

Рисунок 17 – Графическое решение уравнения 𝑡𝑔𝑥 = 𝑥 

1.6. Для электрона, находящегося в основном состоянии в 

атоме водорода, вычислить среднее значение расстояния 𝑟̅  
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от ядра, 𝑟2̅̅ ̅ и  среднеквадратичную  флуктуацию координаты  

√(∆𝑟)2̅̅ ̅̅ ̅̅ ̅. 

 

РЕШЕНИЕ 

Вероятность нахождения электрона в элементе объема 𝑑𝑉 

определяется выражением 

𝑑𝑊=𝓌𝑟  𝑑𝑉, 

 где  

𝓌𝑟 = | 𝑅𝑛ℓ(𝑟)|
2. 

В сферической системе координат 𝑑𝑉 = 𝑟2𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑𝑑𝑟. Нас бу-

дет интересовать только радиальная часть, поэтому  

 𝑑𝑊(𝑟) = |𝑅𝑛ℓ(𝑟)|
2𝑟2𝑑𝑟.                                    (1.49) 

В основном состоянии 1s радиальная часть волновой функ-

ции 𝑅10 = 𝐶0𝑒
−

𝑟

𝑎 ,  

где a – радиус первой боровской орбиты,  𝐶0 −  нормировочная 

константа, которая находится из общего выражения 

𝐶𝑛ℓ   = (
𝑍

𝑛𝑎
)

3
2⁄

√
4

𝑛(𝑛 − ℓ − 1)! (𝑛 + ℓ)!
 .                     

При 𝑛 = 1, ℓ = 0 получаем 

𝐶0 =
2

𝑎3 2⁄
 .                                          (1.50) 

Среднее расстояние 𝑟̅ электрона от ядра определяется вы-

ражением 

𝑟̅ = ∫ 𝑟𝑑𝑊(𝑟)

∞

0

= ∫ 𝑟| 𝑅𝑛ℓ(𝑟)|
2

∞

0

𝑟2𝑑𝑟 = 𝐶0
2 ∫ 𝑟3𝑒− 

2𝑟
𝑎

∞

0

𝑑𝑟.     (1.51) 
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Далее надо трижды применить процедуру вычисления инте-

грала по частям. Первое интегрирование даёт: 

𝑢 = 𝑟3,   𝑑𝑢 = 3𝑟2𝑑𝑟, 

𝑑𝑣 = 𝑒− 
2𝑟
𝑎 𝑑𝑟, 𝑣 = −

𝑎

2
𝑒− 

2𝑟
𝑎 , 

𝑟̅ =
3𝑎

2
𝐶0

2 ∫ 𝑟3𝑒− 
2𝑟
𝑎 𝑑𝑟.

∞

0

 

Вычисляя ещё два раза по частям получившийся интеграл, с 

учётом нормировочного множителя (1.50) окончательно будем 

иметь 

𝑟̅ =
3𝑎

2
= 1,5𝑎 .                                       (1.52) 

Из (1.52) видно, что среднее расстояние электрона от ядра отли-

чается от наиболее вероятного, соответствующего радиусу пер-

вой боровской орбиты, в 1,5 раза.  

Для нахождения среднего значения квадрата расстояния 𝑟2̅̅ ̅ 

электрона от ядра в атоме водорода проводим вычисления по 

аналогии с (1.51): 

𝑟2̅̅ ̅ = ∫ 𝑟2𝑑𝑊(𝑟)

∞

0

= ∫ 𝑟2| 𝑅𝑛ℓ(𝑟)|
2

∞

0

𝑟2𝑑𝑟 = 𝐶0
2 ∫ 𝑟4𝑒− 

2𝑟
𝑎

∞

0

𝑑𝑟 = 3𝑎2.  (1.53)  

С учётом (1.52) и (1.53) получаем 

 

(∆𝑟)2̅̅ ̅̅ ̅̅ ̅ = 𝑟2̅̅ ̅ − (𝑟̅)2 = 3𝑎2 − (
3𝑎

2
)
2

=
3

4
𝑎2. 

Отсюда следует выражение для среднеквадратичной флуктуа-

ции координаты 

√(∆𝑟)2̅̅ ̅̅ ̅̅ ̅ =
√3

2
𝑎 ≈ 0,866𝑎.                        (1.54) 
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1.7. Исследовать угловое распределение плотности вероят-

ности при движении электрона в центрально-симметричном 

поле для случая ℓ = 1 (p-состояния). 

 

РЕШЕНИЕ 

Угловая часть волновой функции определяется выраже-

нием 

       𝑌ℓ,𝑚(θ, φ) = √
(2ℓ + 1)

4𝜋

(ℓ − 𝑚)!

(ℓ + 𝑚)!
 𝑃ℓ

𝑚(𝑐𝑜𝑠θ)𝑒𝑖𝑚𝜑,          (1.55) 

где 

𝑃ℓ
𝑚(𝑐𝑜𝑠θ) = 𝑃ℓ

𝑚(𝑥) = (1 − 𝑥2)
|𝑚|
2

𝑑|𝑚|

𝑑𝑥|𝑚|
𝑃ℓ(𝑥) 

– присоединённые полиномы Лежандра. Для стандартного вы-

числения присоединенного полинома Лежандра степени ℓ по-

рядка 𝑚 необходимо найти производную m-го порядка от поли-

нома (многочлена) Лежандра 𝑃ℓ(𝑐𝑜𝑠θ) = 𝑃ℓ(𝑥). В свою очередь, 

как известно из курса «Методы математической физики», поли-

ном Лежандра степени ℓ вычисляется по формуле Родрига: 

𝑃ℓ(𝑥) =
1

2ℓℓ!

𝑑ℓ

𝑑𝑥ℓ
(𝑥2 − 1)ℓ.                                    

 Более простой способ вычисления сферических функций  заклю-

чается в последовательном понижении магнитного квантового 

числа 𝑚 при данном значении орбитального квантового числа ℓ 

в соответствии с формулами таблицы 4.  

Нормировочные множители определяются из условия нор-

мировки. Например, пронормируем состояние  𝑌1,1. Будем иметь: 



72 
 

∫ ∫ | 𝑌1,1|
2
sin 𝜃 𝑑𝜃 𝑑

2𝜋

0

𝜋

0

φ = 1,  

2𝜋𝐶1,1
2 ∫(1 − 𝑐𝑜𝑠2𝜃)𝑑𝑐𝑜𝑠

𝜋

0

 𝜃 = 1. 

Дальше надо проявить искусство вычисления данного инте-

грала и убедиться, что  

𝐶1,1 = √3 8𝜋 ⁄  ;       𝑌1,1 = √3 8𝜋 ⁄ sin 𝜃 𝑒𝑖𝜑 ;  |𝑌1,1|
2
=

3

8𝜋
𝑠𝑖𝑛2𝜃. 

 Угловое распределение плотности вероятности можно 

наглядно представить с помощью полярных диаграмм, исполь-

зуя полярную систему координат. По радиусу-вектору, прове-

денному под углом θ к оси z, откладывается величина плотности 

вероятности. Угол 𝜃 отсчитывается от оси Z.Чем больше плот-

ность вероятности, тем дальше оказывается точка от начала ко-

ординат. Соединив точки, полученные для каждого угла θ, будем 

иметь распределение плотности вероятности по углам. В случае 

p-состояния получаются 3 полярные диаграммы (рис. 18): 

 

Рисунок 18 – Полярные диаграммы для p-состояний 
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Таблица 4 – Сферические функции для 𝑚 = ℓ, ℓ − 1, ℓ − 2 

𝑚  𝑌ℓ,𝑚 

𝑚 = ℓ 𝑌ℓ,ℓ(θ, φ) = 𝐶ℓ,ℓ𝑠𝑖𝑛
ℓθ 𝑒𝑖ℓ𝜑                                           

𝑚 = ℓ − 1 𝑌ℓ,ℓ−1(θ, φ) = 𝐶ℓ,ℓ−1𝑐𝑜𝑠θ 𝑠𝑖𝑛
ℓ−1θ 𝑒𝑖(ℓ−1)𝜑            

𝑚 = ℓ − 2 𝑌ℓ,ℓ−2(θ, φ) = 𝐶ℓ,ℓ−2𝑠𝑖𝑛
ℓ−2θ [1 − (2ℓ − 1)𝑐𝑜𝑠2θ]𝑒𝑖(ℓ−2)𝜑   

Тогда для случая ℓ = 1 будем иметь три p-состояния (таблица 5): 

Таблица 5 – Угловое распределение плотности вероятности 

для p-состояний 

С
о

ст
о
я
н

и
е 

ℓ m 𝑌ℓ,𝑚 |𝑌ℓ,𝑚|
2
 𝐾 𝐾𝑧 

p 

1 

1 

0 

–1 

√3 8𝜋 ⁄ sin 𝜃 𝑒𝑖𝜑 

√3/4𝜋 𝑐𝑜𝑠 𝜃 

√3 8𝜋 ⁄  sin 𝜃 𝑒−𝑖𝜑 

3 8𝜋 ⁄ 𝑠𝑖𝑛2𝜃 

3 4𝜋 ⁄ 𝑐𝑜𝑠2𝜃 

3 8𝜋 ⁄ 𝑠𝑖𝑛2𝜃 

√2ℏ 

√2ℏ 

√2ℏ 

ℏ 

0 

– ℏ 

 Мы видим, что распределение вероятности по направле-

ниям совершенно не зависит от азимутального угла 𝜑: 

|𝑌ℓ,𝑚(θ, φ)|
2

≠ 𝑓(𝜑).  

В состоянии 𝑌1,0 электрон с наибольшей вероятностью нахо-

дится на экваторе, а в состояниях 𝑌1,−1 и 𝑌1,1 – на полюсах. 

1.8. Линейный гармонический осциллятор с зарядом е по-

мещен в однородное электрическое поле напряженностью ℰ, 

направленное вдоль оси колебаний. Найти изменение энергии 

осциллятора, считая электрическое поле слабым. 
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РЕШЕНИЕ 

 В слабом электрическом поле добавку к оператору энергии 

𝑊 = −𝑒ℰ𝑥 , где 𝑥 −  координата осциллятора, можно рассмат-

ривать как возмущение. Применяя теорию возмущений, имеем 

для поправки к энергии первого порядка: 

𝐸𝑛
(1)

= ⟨Ψ𝑛
0|𝑊 ̂|Ψ𝑛

0⟩ = 

= ∫ Ψ𝑛
0∗ 𝑊 ̂Ψ𝑛

0𝑑𝑉 =   = −𝑒ℰ ∫ Ψ𝑛
0∗ 𝑥Ψ𝑛

0𝑑𝑉 = −𝑒ℰ

𝑉

𝑥𝑛𝑛.  

𝑉

 

Ввиду нечётности подынтегральной функции матричный эле-

мент координаты  

𝑥𝑛𝑛. = 0. 

Поэтому  

𝐸𝑛
(1)

= 0                                        (1.56) 

и в первом приближении уровни энергии осциллятора остаются 

несмещёнными. 

 Во втором приближении  

𝐸𝑛
(2)

= ∑
|⟨𝑛0|𝑊 ̂|𝑘0⟩|

2

𝐸𝑛
0 − 𝐸𝑘

0 =

𝑘(≠𝑛)

𝑒2ℰ2

ℏ𝜔
 ∑

|𝑥𝑘𝑛|
2 

𝑛 − 𝑘
𝑘(≠𝑛)

. 

Для получения окончательного результата необходимо исполь-

зовать правила отбора: для осциллятора возможны квантовые 

переходы только между соседними энергетическими уровнями. 

При этом отличные от нуля матричные элементы определяются 

выражениями 
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𝑥𝑛−1,𝑛 = ⟨Ψ𝑛−1|𝑥|Ψ𝑛⟩ = 𝑥0√
𝑛

2
  ,

                 𝑥𝑛+1,𝑛 = ⟨Ψ𝑛+1|𝑥|Ψ𝑛⟩ = 𝑥0√
𝑛 + 1

2
  ,                                

где  

𝑥0 = √
ℏ

𝑚𝜔
 . 

Поэтому энергетический спектр ЛГО при наличии электриче-

ского поля во втором порядке теории возмущений имеет вид: 

𝐸𝑛
(2)

= ℏ𝜔 (𝑛 +
1

2
) −

𝑒2

2𝑚𝜔2
 ℰ2.                    (1.57) 

Таким образом, во внешнем электрическом поле происходит по-

нижение энергетических уровней ЛГО. Для основного состояния 

𝐸осн
(2)

=
ℏ𝜔

2
−

𝑒2

2𝑚𝜔2
 ℰ2. 

Нулевые колебания, обусловленные волновыми свойствами мик-

рочастицы, могут быть подавлены электрическим полем, если   

ℏ𝜔

2
−

𝑒2

2𝑚𝜔2
 ℰ2 = 0,  

т.е. если  

ℰ = √
𝑚ℏ𝜔3

𝑒2
 . 

1.9. Получить гамильтониан обменного взаимодействия 

для двухэлектронной системы. 
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РЕШЕНИЕ 

 Рассмотрим оператор полного спина двухэлектронной си-

стемы: 

𝑆 ̂ = 𝑆 ̂1 + 𝑆 ̂2. 

Возведём это выражение в квадрат 

𝑆 ̂2 = 𝑆 ̂1
2

+ 𝑆 ̂2
2

+ 2𝑆 ̂1𝑆 ̂2. 

Очевидно, что 

2𝑆 ̂1𝑆 ̂2 = 𝑆 ̂2 − 𝑆 ̂1
2

− 𝑆 ̂2
2

.                            (1.58) 

Учитывая, что оператор 𝑆 ̂2 имеет собственное значение  

ℏ2𝑆(𝑆 + 1), а каждый из спиновых операторов 𝑆 ̂1
2

и 𝑆 ̂2
2

имеют 

собственное значение 
3

4
ℏ2, полагая ℏ ≡ 1, получим из (1.58)  

2𝑆 ̂1𝑆 ̂2 = 𝑆(𝑆 + 1) −
3

2
 . 

Умножим обе части этого уравнения на (−1) и добавим по 

(−1 2⁄ ): 

−
1

2
− 2𝑆 ̂1𝑆 ̂2 = 1 − 𝑆(𝑆 + 1). 

Затем умножим обе части данного уравнения на обменную 

энергию 𝐴, получим: 

−
𝐴

2
− 2𝐴𝑆 ̂1𝑆 ̂2 = 𝐴 − 𝐴𝑆(𝑆 + 1) = 

= {
𝐴, если 𝑆 = 0 (синглет) 

−𝐴, если 𝑆 = 1 (триплет).
                             (1.59) 

Таким образом, в правой части выражения (1.59) содержится 

собственное значение оператора обменного взаимодействия 

±𝐴. Следовательно, гамильтониан обменного взаимодействия 

двухэлектронной системы имеет вид 

𝐻̂обм. = −
𝐴

2
− 2𝐴𝑆 ̂1𝑆 ̂2.                            (1.60) 
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Выражение (1.60) представляет собой обменный гамильтониан 

Гейзенберга. Обобщение на случай кристалла приводит к об-

менному гамильтониану Гейзенберга – Дирака  

𝐻̂обм. = −𝑐𝑜𝑛𝑠𝑡 − 2 ∑ 𝐴𝑚𝑛

𝑚≠𝑛

𝑆 ̂𝑚𝑆 ̂𝑛,                       (1.61) 

который имеет принципиальное значение для теории магнито-

упорядоченных систем. Гамильтониан (1.61) описывает обмен-

ное взаимодействие между соседними узлами 𝑚 и 𝑛 кристалли-

ческой решётки.  

1.10. Используя правила Хунда, определить полный мо-

мент импульса (𝐽), суммарный орбитальный момент (𝐿), сум-

марный спиновый момент (𝑆) электронной системы атома, ос-

новной терм и g-фактор (множитель Ланде) для иона железа 

Fe2+ (Z=26, электронная конфигурация 3d6), относящегося к 

числу переходных элементов, и иона европия Eu2+ (Z=63, элек-

тронная конфигурация  4f7), относящегося к первой группе ред-

ких земель – лантанидов. 

 

РЕШЕНИЕ 

Полный момент количества движения 𝐽  электронной обо-

лочки атома является векторной суммой результирующего орби-

тального момента 𝐿⃗  и результирующего спинового момента 𝑆 : 

𝐽 = 𝐿⃗ + 𝑆 .                                        (1.62) 

 Последовательность уровней с одинаковой конфигура-

цией, но различными L и S по величине их энергии определяется 

с помощью эмпирических правил наивысшей мультиплетности, 

установленных Хундом в 1927 г. 

Первое правило: наименьшей энергией обладает терм  

с наибольшим значением суммарного спина S и наибольшим 
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(при этом значении S) суммарным орбитальным моментом L. 

Подробнее его можно сформулировать так: 

1а. Суммарное спиновое квантовое число 𝑆 = ∑ (𝑚𝑠)𝑘𝑘   

в основном состоянии максимально в пределах, допускаемых 

принципом Паули. 

1б. Суммарное орбитальное квантовое число   

𝐿 = ∑ (𝑚ℓ)𝑘𝑘  в основном состоянии максимально в пределах, 

допускаемых правилом 1а. 

Второе правило: суммарное квантовое число полного мо-

мента J для неполностью застроенного слоя определяется сле-

дующим образом: 

2а. 𝐽 = 𝐿 − 𝑆, если слой заполнен менее чем наполовину. 

2б. 𝐽 = 𝐿 + 𝑆, если слой заполнен больше чем наполовину. 

Если слой заполнен наполовину (𝐿 = 0), то 𝐽 = 𝑆. 

Принцип Паули (1925 г.) утверждает, что в состоянии, ха-

рактеризуемом набором 4 квантовых чисел (n, ℓ,𝑚, 𝑚𝑠), может 

находиться не более, чем 1 электрон. Т.е. в атоме нельзя найти 

два электрона с одним и тем же квантовым «адресом». 

 Важнейшие характеристики электронной системы атома 

«зашифрованы» в спектральном терме.  Для спектральных тер-

мов (𝑇) приняты следующие обозначения. В основе символа 

стоит орбитальное квантовое число 𝐿 (таблица 6). 

Таблица 6 – Классификация спектральных термов 

𝐿 0 1 2 3 4 5 6 7  

𝑇(терм) S P D F G H I K  

 

Слева вверху от символа указывается мультиплетность терма 

(2𝑆 + 1), т.е. число состояний мультиплета с данным J. Справа 
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внизу указывается значение полного момента  J. При (2𝑆 + 1) =

= 1, 2, 3, … получим синглетные, дублетные, триплетные уровни 

соответственно. Таким образом, в общем случае обозначение 

терма следующее: 𝑇𝐽
(2𝑆+1)

 . 

 По значениям L, 𝑆, J вычисляются g-фактор (множитель 

Ланде, или фактор спектроскопического расщепления) элек-

тронной оболочки атома и эффективный магнитный момент 

атома (эффективное число магнетонов Бора). Множитель Ланде 

определяется выражением: 

𝑔J = 1 +
𝐽(𝐽 + 1) + 𝑆(𝑆 + 1) − 𝐿(𝐿 + 1)

2𝐽(𝐽 + 1)
.              (1.63) 

В качестве эффективного магнитного момента атома принима-

ется максимальное положительное значение проекции полного 

магнитного момента на направление магнитного поля: 

𝜇𝑧,эфф = 𝑔𝐽 ∙ 𝐽 ∙ 𝜇Б .                                  (1.64) 

При ℓ = 0 (s-состояние) возможно одно значение проекции 

орбитального момента и один уровень энергии. При ℓ = 1 (p-со-

стояние) возможны три проекции орбитального момента, соответ-

ствующие значениям 𝑚 = −1, 0, +1, и три уровня энергии. При 

ℓ = 2 (d-состояние) имеем 𝑚 = −2,−1, 0, +1, +2 и 5 уровней. 

При ℓ = 3 (f-состояние) получаем 7 проекций орбитального мо-

мента: 𝑚 = −3,−2, −1, 0, +1,+2,+3 и 7 уровней и т. д.  Низший 

уровень соответствует максимальному значению 𝑚.  

1. Проведём вычисления для иона железа 𝐹𝑒2+. Чертим пять 

d-уровней. Пять электронов заполняют все уровни со спинами 

«вверх», а шестой нужно поместить на нижний уровень, соот-

ветствующий максимальному ℓ = 2, со спином «вниз» по прин-

ципу Паули (рис. 19). 
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Рисунок 19 – Заполнение уровней для иона железа 𝐹𝑒2+ 

По правилам Хунда находим: 

 𝑆 = 5 ∙ 1 2⁄ − 1 2⁄ = 2; 𝐿 = 2 + 1 + 0 − 1 − 2 + 2 = 2;  

𝐽 = 2 + 2 = 4. Мультиплетность (2𝑆 + 1) = 5. Поэтому основ-

ной терм иона железа 𝐹𝑒2+ будет 𝐷4
5 . По формулам (1.63) и 

(1.64) определяем g-фактор и эффективное число магнетонов 

Бора:  𝑔𝐽 = 3 2⁄ ;   𝜇𝑧,эфф 𝜇Б⁄  = 6. 

2. Проведём вычисления для иона европия 𝐸𝑢2+. Максималь-

ное число электронов, которое может находиться в f-состоянии, 

равно 14 (см. табл. 6). Следовательно, мы имеем дело с половин-

ным заполнением электронного слоя. В соответствии с правилами 

Хунда 1а и 1б распределяем 7 имеющихся электронов со спином 

«вверх» по 7 энергетическим уровням, начиная с уровня, соответ-

ствующего наибольшему значению ℓ = 3 (рис. 20). 
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Рисунок 20  – Заполнение уровней для иона европия 𝐸𝑢2+ 

 Для 7 нескомпенсированных спинов «вверх» получаем  

𝑆 = 7 2⁄ . Суммарный орбитальный момент 𝐿 = 3 + 2 + 1 + 0 −

−1 − 2 − 3 = 0, что и следовало ожидать, поскольку слой 4f за-

полнен лишь наполовину. Поэтому согласно второму правилу 

Хунда 𝐽 = 𝑆 = 7/2. Далее определяем мультиплетность терма: 

(2𝑆 + 1) = 8. Таким образом, основной терм иона 𝐸𝑢2+ следу-

ющий: 𝑆7 2⁄
8 . По формулам (1.63) и (1.64) вычисляем g-фактор 

и эффективное число магнетонов Бора: 𝑔𝐽 = 2;   𝜇𝑧,эфф 𝜇Б⁄  = 7. 

  



82 
 

5 Примеры решения задач по разделу 

«Статистическая физика и термодинамика» 

 

 

 Центральным пунктом статистической физики равновес-

ных систем является каноническое распределение Гиббса. Для 

вычисления равновесных средних значений термодинамиче-

ских параметров необходимо определить статистический инте-

грал (интеграл состояний), либо статистическую сумму. 

 В ряде задач необходимо использовать хорошо известные 

определённые интегралы (такие как интегралы Пуассона, инте-

грал ошибок, интегралы квантовой статистики), значения кото-

рых приведены в Приложении Б. 

2.1. Определить фазовую траекторию линейного гармониче-

ского осциллятора (ЛГО) при наличии силы трения, пропорци-

ональной скорости. 

 

РЕШЕНИЕ 

Уравнение движения ЛГО имеет вид 

𝑚𝑞̈ = −𝑘𝑞 − 𝜇𝑞,̇  

где 𝜇 − коэффициент трения, 𝑞 − обобщённая координата. Это 

уравнение эквивалентно следующему 

𝑞̈ +
𝜇

𝑚
𝑞̇ + 𝜔0

2𝑞 = 0,                              (2.1) 

где 𝜔0 − частота собственных колебаний ЛГО,  𝑚 − его масса. 

При наличии трения колебания будут затухающими и коорди-

ната меняется по закону 

𝑞 = 𝐴𝑒𝛼𝑡 , 𝛼 < 0.                             (2.2) 

Подставляя (2.2) в (2.1), получим 
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𝛼2 +
𝜇

𝑚
𝛼 + 𝜔0

2 = 0.                                 (2.3) 

Решением уравнения (2.3) является 

𝛼 = −
𝜇

2𝑚
± 𝑖𝜔, 

где  

𝜔 = √𝜔0
2 − (

𝜇

2𝑚
)
2

. 

Тогда (2.2) примет вид 

𝑞 = 𝐴𝑒− 
𝜇

2𝑚𝑡𝑒𝑖𝜔𝑡,   

или 

𝑞 = 𝐴𝑒− 
𝜇

2𝑚𝑡(𝑐𝑜𝑠𝜔𝑡 + 𝑖𝑠𝑖𝑛𝜔𝑡). 

Учитывая затухающий характер движения, ограничимся учётом 

мнимой части: 

 𝑞 = 𝐴𝑒− 
𝜇

2𝑚𝑡𝑠𝑖𝑛𝜔𝑡.                                      (2.4) 

Используя (2.4), находим обобщённый импульс ЛГО: 

𝑝 = 𝑚𝑞,̇  

𝑝 = −
𝜇

2
𝑞 + 𝑚𝜔𝐴𝑒− 

𝜇
2𝑚𝑡𝑐𝑜𝑠𝜔𝑡. 

После возведения в квадрат обеих частей этого уравнения с учё-

том (2.4) получим искомое уравнение, определяющее фазовую 

траекторию ЛГО 

𝑞2

𝐴2𝑒− 
𝜇
𝑚𝑡

+
(𝑝 +

𝜇
2

𝑞)
2

𝑚2𝜔2𝐴2𝑒− 
𝜇
𝑚𝑡

= 1.                       (2.5) 

При 𝑡 = 0 фазовая траектория представляет собой эллипс 

𝑞2

𝐴2
+

(𝑝 +
𝜇
2

𝑞)
2

𝑚2𝜔2𝐴2
= 1. 
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При 𝑡 ≠ 0 уравнение (2.5) принимает вид 

𝑞2

𝑎2
+

(𝑝 +
𝜇
2

𝑞)
2

𝑏2
= 1,                                    (2.6) 

где  

𝑎2 = 𝐴2𝑒− 
𝜇
𝑚

𝑡, 𝑏2 = 𝑚2𝜔2𝐴2𝑒− 
𝜇
𝑚

𝑡. 

Таким образом, фазовая траектория затухающего гармониче-

ского осциллятора представляет собой эллиптическую спираль, 

которая закручивается к началу координат (рис. 21). Это связано 

с тем, что при наличии трения колебания системы постепенно 

затухают, и точка, изображающая состояние системы на фазо-

вой плоскости, приближается к положению равновесия (началу 

координат). 

 

Рисунок 21 – Фазовая траектория затухающего ЛГО 

2.2.  Учитывая связь энтропии с распределением вероятно-

стей микросостояний 

𝑆 = −𝑘 ∑𝑊𝑖 ∙ ℓ𝑛𝑊𝑖 ,

𝑁

𝑖=1

                          (2.7) 

где  𝑊𝑖 – вероятность 𝑖 − го  состояния, 𝑁 −число всех возмож-

ных состояний системы,  исследовать её поведение в двухуров-

невой системе двумя способами: 
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1) применив каноническое распределение Гиббса; 

2) используя кинетическое уравнение  

𝑑𝑊𝑖

𝑑𝑡
= 𝜔(1 − 2𝑊𝑖),                                       (2.8) 

где 𝜔 – частота перескоков частиц между энергетическими 

уровнями  (𝜔 = 𝑐𝑜𝑛𝑠𝑡). 

 

РЕШЕНИЕ 

1.  В случае системы с двумя энергетическими уровнями 𝐸1 

и 𝐸2 (рис. 22) энтропия, согласно (2.7), имеет вид 

𝑆 = −𝑘(𝑊1ℓ𝑛𝑊𝑖 + 𝑊2ℓ𝑛𝑊2 ),                             (2.9) 

где 

𝑊1 = 𝐴𝑒− 
𝐸1
𝑘𝑇 ,𝑊2 = 𝐴𝑒− 

𝐸2
𝑘𝑇  ,                                (2.10) 

в соответствии с каноническим распределением Гиббса. Норми-

ровочная константа 𝐴 определяется выражением 

𝐴 =
1

𝑒− 
𝐸1
𝑘𝑇 + 𝑒− 

𝐸2
𝑘𝑇

 . 

 

Рисунок 22 – Двухуровневая система 

 Учитывая, что 𝑊1 + 𝑊2 = 1, получим из (2.9): 

𝑆 = −𝑘 (𝑊1ℓ𝑛
𝑊1

𝑊2
+ ℓ𝑛𝑊2 ).                      (2.11) 

Согласно (2.10), 
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𝑊1

𝑊2
= 𝑒

∆𝐸
𝑘𝑇 .                                                               (2.12) 

 Подставляя это отношение в (2.11), получим 

𝑆 =
∆𝐸

𝑇

1

𝑒
∆𝐸
𝑘𝑇 + 1

+ 𝑘ℓ𝑛 (1 + 𝑒− 
∆𝐸
𝑘𝑇).                       (2.13) 

Из (2.13) следует, что  

а) lim
𝑇→0

𝑆 = 𝑘ℓ𝑛1 = 0, что согласуется с третьим началом термо-

динамики в формулировке Планка; 

б) lim
𝑇→∞

𝑆 = 𝑘ℓ𝑛2, что согласуется с одинаковой населённостью 

уровней энергии, 𝑊1 = 𝑊2 = 1 2⁄  при высоких температурах. 

Таким образом, в состоянии статистического равновесия энтро-

пия двухуровневой системы достигает максимального значения 

𝑘 ∙ 0,69. 

2. Теперь используем кинетическое уравнение (2.8), запи-

сав его для вероятности нижнего энергетического уровня 

𝑑𝑊1

𝑑𝑡
= 𝜔(1 − 2𝑊1).                                          (2.14) 

Найдём производную  

𝑑𝑆

𝑑𝑡
= 𝑘

𝑑𝑊1

𝑑𝑡
ℓn

1 − 𝑊1

𝑊1
 .                                     (2.15) 

Подставляя (2.14) в уравнение (2.15), получим 

𝑑𝑆

𝑑𝑡
= 𝑘𝜔(1 − 2𝑊1) ℓn

1 − 𝑊1

𝑊1
.                         (2.16) 

Из (2.16) следует, что:  

а) при  𝑊1 > 1 2⁄  изменение энтропии 
𝑑𝑆

𝑑𝑡
> 0, т.е. имеет место 

рост энтропии; 

б) при  𝑊1 < 1 2⁄  снова  выполняется неравенство 
𝑑𝑆

𝑑𝑡
> 0; 
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в) при 𝑊1 = 1 2⁄ = 𝑊2, что соответствует выравниванию веро-

ятностей заполнения энергетических уровней, 
𝑑𝑆

𝑑𝑡
= 0. Таким об-

разом, энтропия достигает в статистическом равновесии экстре-

мального (максимального) значения. 

2.3. Записать классическое каноническое распределение 

по энергиям для ЛГО и определить его среднюю энергию. 

 

РЕШЕНИЕ 

  Каноническое распределение Гиббса определяется выра-

жением 

𝑑𝑊 =
1

𝑧
𝑒− 

𝐸
𝑘𝑇 𝑑Г,                                  (2.17) 

где 𝑧 − интеграл состояний 

𝑧 = ∫ 𝑒− 
𝐸

𝑘𝑇 𝑑Г,

Г

                                     (2.18) 

𝑑Г −элемент фазового объёма. В случае классического ЛГО его 

энергия  

𝐸 =
𝑝2

2𝑚
+

𝑚𝜔2𝑥2 

2
. 

Поэтому 

𝑧 = ∫ 𝑒− 
𝑝2

2𝑚𝑘𝑇 

+∞

−∞

𝑑𝑝 ∫ 𝑒− 
𝑚𝜔2𝑥2

2𝑘𝑇 

+∞

−∞

𝑑𝑥 = 

= ∫ 𝑒−𝛼𝑝2

+∞

−∞

𝑑𝑝 ∫ 𝑒−𝛽𝑥2

+∞

−∞

𝑑𝑥,                                        (2.19) 

где 𝛼 = 1 2𝑚𝑘𝑇,   𝛽 = 𝑚𝜔2 2𝑘𝑇⁄⁄ . 
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Каждый из интегралов, стоящих в правой части (2.19), представ-

ляет собой интеграл Пуассона ℐ0 и равен √𝜋 𝛼⁄  и √𝜋 𝛽⁄  соответ-

ственно. Поэтому 

𝑧 =
2𝜋𝑘𝑇

𝜔
 .                                          (2.20) 

В случае ЛГО  

𝑑Г =
2𝜋

𝜔
𝑑𝐸, 

поэтому из (2.17) и (2.20) следует 

𝑑𝑊 =
1

𝑘𝑇
𝑒− 

𝐸
𝑘𝑇 𝑑𝐸. 

Средняя энергия осциллятора равна 

𝐸̅ = ∫ 𝐸𝑑𝑊 =
1

𝑘𝑇

∞

0

∫ 𝐸𝑒− 
𝐸

𝑘𝑇 𝑑𝐸.

∞

0

 

Сделаем замену переменной, обозначив  

𝑥 =
𝐸

𝑘𝑇
 , 

тогда 

𝐸̅ = 𝑘𝑇 ∫ 𝑥𝑒−𝑥𝑑𝑥.

∞

0

 

Вычислим данный интеграл по частям: 

𝑢 = 𝑥, 𝑑𝑢 = 𝑑𝑥, 

𝑑𝑣 = 𝑒−𝑥𝑑𝑥, 𝑣 = −𝑒−𝑥 . 

Будем иметь 

𝐸̅ = 𝑘𝑇 (−𝑥𝑒−𝑥|0
∞ + ∫ 𝑒−𝑥𝑑𝑥

∞

0

) = 𝑘𝑇 ∙ 1 = 𝑘𝑇. 
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Таким образом, средняя энергия классического ЛГО равна 

𝐸̅ = 𝑘𝑇,                                               (2.21) 

что согласуется с теоремой классической статистики о равно-

мерном распределении энергии по степеням свободы. 

2.4.  Доказать теорему об относительной флуктуации адди-

тивной функции состояния: для системы, состоящей из N незави-

симых частей, относительная флуктуация любой аддитивной 

функции состояния L обратно  пропорциональна корню из N, т.е. 

𝛿𝐿 =
1

√𝑁
 .                                          (2.22) 

 

РЕШЕНИЕ 

 По определению аддитивной величины 

𝐿 = ∑ 𝐿𝑘 ,

𝑁

𝑘=1

 

суммирование ведётся по всем независимым частям, входящим 

в систему. Из закона сложения вероятностей следует: 

𝐿̅ = ∑ 𝐿𝑘
̅̅ ̅.

𝑁

𝑘=1

                                      (2.23) 

Вычислим квадратичную флуктуацию величины 𝐿, т.е. 

(∆𝐿)2̅̅ ̅̅ ̅̅ ̅̅ = (∆ ∑ 𝐿𝑘

𝑁

𝑘=1

)

2

.

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 

Для простоты рассмотрим сначала систему, состоящую из двух 

независимых частей. Тогда имеем: 

[∆(𝐿1 + 𝐿2)]
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (∆𝐿1)

2̅̅ ̅̅ ̅̅ ̅̅ ̅ + 2∆𝐿1 ∙ ∆𝐿2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + (∆𝐿2)

2.̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Поскольку 𝐿1и 𝐿2 −независимые величины, среднее от произве-

дения (∆𝐿1) ∙ (∆𝐿2) равно произведению средних: 
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∆𝐿1 ∙ ∆𝐿2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (∆𝐿1)̅̅ ̅̅ ̅̅ ̅ ∙ (∆𝐿2)̅̅ ̅̅ ̅̅ ̅. 

Но (∆𝐿1)̅̅ ̅̅ ̅̅ ̅ = (∆𝐿2)̅̅ ̅̅ ̅̅ ̅ = 0, поэтому 

[∆(𝐿1 + 𝐿2)]
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (∆𝐿1)

2̅̅ ̅̅ ̅̅ ̅̅ ̅ + (∆𝐿2)
2.̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Обобщая на случай N независимых частей, входящих в систему, 

получим 

(∆ ∑ 𝐿𝑘

𝑁

𝑘=1

)

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

= ∑(∆𝐿𝑘)

𝑁

𝑘=1

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

.                         (2.24) 

Очевидно, что значение суммы в правой части (2.24) про-

порционально числу слагаемых, т.е. N, поэтому 

(∆ ∑ 𝐿𝑘

𝑁

𝑘=1

)

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

~𝑁. 

Среднее значение 𝐿̅ также пропорционально числу слагаемых в 

сумме формулы (2.23), т.е. пропорционально 𝑁. Поэтому отно-

сительная флуктуация величины 𝐿 равна 

𝛿𝐿 =
√(∆𝐿)2̅̅ ̅̅ ̅̅ ̅̅

𝐿̅
=

√(∆∑ 𝐿𝑘
𝑁
𝑘=1 )2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

∑ 𝐿𝑘
̅̅ ̅𝑁

𝑘=1

~
√𝑁

𝑁
~

1

√𝑁
 . 

Теорема доказана. 

 Поскольку число частиц в макроскопической системе 

обычно очень велико (порядка 6 ∙ 1023), относительная флукту-

ация любой аддитивной величины практически оказывается 

равной нулю. Это означает, что все аддитивные величины 

имеют значения, весьма близкие к средним. Средние значения 

различных величин, вычисленные на основе законов статисти-

ческой физики, с очень большой точностью совпадают с их ис-

тинными значениями. 
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2.5. Определить число частиц ∆𝑁 𝑁⁄ , скорости которых за-

ключены в интервале от нуля до наиболее вероятной скорости. 

 

РЕШЕНИЕ 

Число частиц, ∆𝑁 𝑁⁄ , скорости которых не превышают 

наиболее вероятное значение 𝑣в, определяется следующим об-

разом: 

∆𝑁 𝑁⁄ = ∫ 𝑓(𝑣)

𝑣в

0

𝑑𝑣 =
4

√𝜋
(

𝑚

2𝑘𝑇
)
3

2⁄

∫ 𝑣2 𝑒− 
𝑚𝑣2

2𝑘𝑇   𝑑𝑣. (2.25)

𝑣в

0

 

Введём следующее обозначение 

𝛼 =
𝑚

2𝑘𝑇
 , 

где  𝑚 −   масса частицы идеального газа, подчиняющегося рас-

пределению Максвелла. При этом формула (2.25) принимает вид 

∆𝑁 𝑁⁄ =
4

√𝜋
𝛼

3
2⁄ ∫ 𝑣2𝑒− 𝛼𝑣2   𝑑𝑣.                        (2.26)

𝑣в

0

 

Учитывая, что 𝑣в = √
2𝑘𝑇 

𝑚
=

1

√𝛼
, удобно сделать замену перемен-

ной: 𝑥 = √𝛼𝑣. Тогда (2.18) примет вид 

∆𝑁 𝑁⁄ =
4

√𝜋
∫𝑒− 𝑥2  𝑥2𝑑𝑥.                              (2.27)

1

0

 

Учитывая, что 𝑑(𝑒− 𝑥2  ) = −2𝑥𝑒− 𝑥2  𝑑𝑥, интеграл в правой ча-

сти (2.27) вычислим по частям: 

𝑢 = −
𝑥

2
 ,    𝑑𝑢 = −

1

2
𝑑𝑥, 

𝑑𝑣 = 𝑑(𝑒− 𝑥2  ),   𝑣 = 𝑒− 𝑥2  . 
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Будем иметь: 

∆𝑁 𝑁⁄ =
4

√𝜋
(−

𝑥

2
 𝑒− 𝑥2  |0

1 +
1

2
∫𝑒− 𝑥2  𝑑𝑥

1

0

), 

∆𝑁 𝑁⁄ = −
2

√𝜋
𝑒−1 +

2

√𝜋
 ∫ 𝑒− 𝑥2  𝑑𝑥

1

0

= −0,418 + 𝑒𝑟𝑓(1) =

= −0,418 + 0,843, 

∆𝑁 𝑁⁄ ≈ 0,43, т. е. 43%. 

В процессе вычислений был использован интеграл ошибок 

𝑒𝑟𝑓(𝑧) =
2

√𝜋
∫𝑒−𝑥2

𝑑𝑥

𝑧

0

= 0,843  при 𝑧 = 1. 

2.6. Найти среднюю потенциальную энергию молекулы 

идеального газа, находящегося в центрифуге радиуса R, враща-

ющейся с постоянной угловой скоростью  𝜔. 

 

РЕШЕНИЕ 

Каждая частица идеального газа во вращающемся цилиндре ис-

пытывает действие центробежной силы инерции 

𝐹 = 𝑚𝜔2𝑟, 

где 𝑟 − расстояние молекулы от оси вращения. Потенциальная 

энергия частицы  в таком силовом поле  имеет вид 

𝑈 = −
𝑚𝜔2𝑟2

2
 . 

Согласно распределению Больцмана, вероятность обнаружить 

молекулу в точке с цилиндрическими координатами 

𝑟, 𝜑, 𝑧 равна   
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𝑑𝑊(𝑟, 𝜑, 𝑧) = 𝐴𝑒− 
𝑈
𝑘𝑇 𝑑𝑉 = 𝐴𝑒

𝑚𝜔2𝑟2

2𝑘𝑇 𝑟𝑑𝑟𝑑𝜑𝑑𝑧. 

Отсюда получим функцию распределения по 𝑟: 

𝑑𝑊(𝑟) = 𝐴1𝑒
𝑚𝜔2𝑟2

2𝑘𝑇 𝑟𝑑𝑟, 

где коэффициент 𝐴1 находится из условия нормировки 

∫ 𝑑𝑊(𝑟)  = 1,

𝑅

0

 

𝐴1 = (∫ 𝑒
𝑚𝜔2𝑟2

2𝑘𝑇 𝑟𝑑𝑟

𝑅

0

)

−1

=
𝑚𝜔2

𝑘𝑇

1

(𝑒
𝑚𝜔2𝑅2

2𝑘𝑇 − 1)

 . 

Следовательно,  

𝑈̅ = ∫ 𝑈 𝑑𝑊(𝑟)  = −
𝑚𝜔2

𝑘𝑇

1

(𝑒
𝑚𝜔2𝑅2

2𝑘𝑇 − 1)

∫
𝑚𝜔2𝑟2

2

𝑅

0

𝑅

0

𝑒
𝑚𝜔2𝑟2

2𝑘𝑇 𝑟𝑑𝑟, 

 

𝑈 = −
𝑚2𝜔4

2𝑘𝑇

1

(𝑒
𝑚𝜔2𝑅2

2𝑘𝑇 − 1)

∫ 𝑟3

𝑅

0

𝑒
𝑚𝜔2𝑟2

2𝑘𝑇 𝑑𝑟.                   (2.28) 

 

Преобразуем интеграл в правой части (2.28): 

∫ 𝑟3

𝑅

0

𝑒
𝑚𝜔2𝑟2

2𝑘𝑇 𝑑𝑟 =
2𝑘𝑇

𝑚𝜔2
∫

𝑚𝜔2𝑟2

2𝑘𝑇

𝑅

0

𝑒
𝑚𝜔2𝑟2

2𝑘𝑇
𝑘𝑇

𝑚𝜔2
𝑑 (

𝑚𝜔2𝑟2

2𝑘𝑇
). 
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Введём обозначение 

𝑥 =
𝑚𝜔2𝑟2

2𝑘𝑇
 . 

Тогда 

∫ 𝑟3

𝑅

0

𝑒
𝑚𝜔2𝑟2

2𝑘𝑇 𝑑𝑟 = 2 (
𝑘𝑇

𝑚𝜔2
)
2

∫ 𝑥𝑒𝑥𝑑𝑥.             (2.29)

𝑚𝜔2𝑅2

2𝑘𝑇

0

 

Интеграл в (2.29) вычисляется по частям: 

𝑢 = 𝑥,   𝑑𝑢 = 𝑑𝑥, 

𝑑𝑣 = 𝑒𝑥𝑑𝑥, 𝑣 = 𝑒𝑥 . 

В результате будем иметь 

2 (
𝑘𝑇

𝑚𝜔2
)
2

∫ 𝑥𝑒𝑥𝑑𝑥 =

𝑚𝜔2𝑅2

2𝑘𝑇

0

= 2(
𝑘𝑇

𝑚𝜔2
)
2

[
𝑚𝜔2𝑅2

2𝑘𝑇
 𝑒

𝑚𝜔2𝑅2

2𝑘𝑇 − (𝑒
𝑚𝜔2𝑅2

2𝑘𝑇 − 1)].                    

 

Подставляя полученный результат в (2.28), получим 

𝑈 = −𝑘𝑇
1 + (

𝑚𝜔2𝑅2

2𝑘𝑇
− 1) 𝑒

𝑚𝜔2𝑅2

2𝑘𝑇

(𝑒
𝑚𝜔2𝑅2

2𝑘𝑇 − 1)

 .                              (2.30) 

2.7. Вычислить статистический интеграл классического 

идеального газа, содержащего N частиц. Используя связь со ста-

тистическим интегралом, найти следующие термодинамиче-

ские функции: свободная энергия, давление, энтропия, внутрен-

няя энергия, химический потенциал. 
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РЕШЕНИЕ 

1. Статистический интеграл имеет вид 

𝑧 = ∫ 𝑒− 
ℋ
𝑘𝑇 𝑑Г,

Г

  

где 𝑑Г −элемент фазового объёма, ℋ − функция Гамильтона 

(полная механическая энергия системы). В случае классического 

идеального газа из N частиц с s степенями свободы (𝑠 = 3𝑁):  

𝑧 = ∫ 𝑒𝑥𝑝 {− ∑
𝑝𝛼

2

2𝑚𝑘𝑇

3𝑁

𝛼=1

} 𝑑𝑝1𝑑𝑝2 …𝑑𝑝3𝑁 ∫ 𝑑𝑞1𝑑𝑞2 …𝑑𝑞3𝑁,

𝑞𝑝

 

или 

𝑧 = 𝑉𝑁 [ ∫ 𝑒𝑥𝑝 {− ∑
𝑝𝛼

2

2𝑚𝑘𝑇

3𝑁

𝛼=1

} 𝑑𝑝1

+∞

−∞

]

3𝑁

.             (2.31) 

Обозначив  

1

2𝑚𝑘𝑇
= 𝛽, 

приходим к интегралу Пуассона 

∫ 𝑒−𝛽𝑥2 𝑑𝑥 = √
𝜋

𝛽
 .

+∞

−∞

 

 

 

Поэтому из (2.31) следует 

𝑧ид  = (2𝜋𝑚𝑘𝑇)
3𝑁
2 𝑉𝑁 .                                        (2.32) 

В квазиклассическом случае  

𝑧ид  =
1

𝑁! ℎ3𝑁
(2𝜋𝑚𝑘𝑇)

3𝑁
2 𝑉𝑁 , 
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где множитель 𝑁! учитывает принцип неразличимости одинако-

вых частиц, а множитель ℎ3𝑁 есть элементарный объём в фазо-

вом пространстве координат и импульсов. 

2. Свободная энергия F связана со статистическим инте-

гралом равенством  

𝐹 = −𝑘𝑇ℓ𝑛𝑧. 

Поэтому 

𝐹 = −𝑁𝑘𝑇 [
3

2
 ℓ𝑛(2𝜋𝑚𝑘𝑇) + ℓ𝑛𝑉. ]                 (2.33) 

3. Давление газа связано со свободной энергией равен-

ством 

𝑝 = −(
𝜕𝐹

𝑑𝑉
)

𝑇
,  

поэтому, учитывая, что  

𝜕ℓ𝑛𝑧

𝜕𝑉
=

1

𝑧
 
𝜕𝑧

𝜕𝑉 
, 

получим  

𝑝 =
𝑘𝑇

𝑧
(
𝜕𝑧

𝜕𝑉
)

𝑇
. 

Согласно (2.33) 

𝑝 =
𝑁𝑘𝑇

𝑉 
 ,                                        (2.34) 

 

откуда следует уравнение состояния идеального классического 

газа: 

𝑝𝑉 = 𝑁𝑘𝑇. 

Для 1  моля, когда 𝑁 = 𝑁𝐴, 

𝑝𝑉 = 𝑅𝑇. 
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4. Энтропия S связана с интегралом состояний равенством  

𝑆 = −(
𝜕𝐹

𝑑𝑇
)
𝑉 

= 𝑘
𝜕

𝜕𝑇
(𝑇ℓ𝑛𝑧). 

С учётом (2.33) получаем следующее выражение: 

𝑆 =
3

2
𝑁𝑘 ℓn𝑇 + 𝑁𝑘ℓn𝑉 + 𝑆0,                      (2.35) 

где  

𝑆0 =
3

2
𝑁𝑘[ℓn(2𝜋𝑚𝑘) + 1].                         (2.36) 

Для 1 моля  

𝑆 = С𝑉ℓ𝑛𝑇 + 𝑅ℓ𝑛𝑉 + 𝑆0,                             (2.37) 

где С𝑉 = 3
2⁄ 𝑁𝐴𝑘 − молярная теплоёмкость при постоянном 

объёме. 

Заметим, что такое же выражение (2.37) для энтропии получа-

ется и термодинамическим методом из основного термодинами-

ческого тождества 

𝑇𝑑𝑆 = 𝑑𝑈 + 𝑝𝑑𝑉. 

Преимущество статистического расчёта состоит в том, что он 

позволяет вскрыть микроструктуру постоянной 𝑆0  (2.36). 

 

5. Согласно определению, внутренняя энергия   

𝑈 = 𝐸̅ = ∫ 𝐸𝜌𝑑Г =
1

𝑧
∫ 𝐸𝑒− 

𝐸 
𝑘𝑇𝑑Г.

ГГ

 

Введём обозначение: 𝛽 = 1
𝑘𝑇⁄ . 
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Тогда  

𝐸̅ =
1

𝑧
∫ 𝐸𝑒−𝛽𝐸𝑑Г =

1

𝑧
(−

𝜕𝑧

𝜕𝛽
) = −

𝜕ℓ𝑛𝑧

𝜕𝛽
,

Г

 

или 

 

𝐸̅ = 𝑘𝑇2 (
𝜕ℓ𝑛𝑧

𝜕𝑇
)
𝑉

= 𝑘𝑇2 
1

𝑧

𝜕𝑧

𝜕𝑇
 .                     (2.38) 

С учётом (2.32) получим: 

𝐸̅ =
3

2
𝑁𝑘𝑇,                                        (2.39) 

что согласуется с теоремой о равнораспределении энергии и 

приводит к статистическому толкованию температуры как меры 

средней кинетической энергии частиц идеального газа. 

Для 1 моля идеального газа  

𝐸̅ =
3

2
𝑅𝑇. 

6. Для получения выражения для химического потенциала 

𝜇 используем соотношение 

𝑒− 
𝜇
𝑘𝑇 =

𝑧

𝑁
 . 

Прологарифмировав его, находим  

µ = 𝑘𝑇 ℓn
𝑁

(2𝜋𝑚𝑘𝑇)
3𝑁
2 𝑉𝑁

 .                              (2.40) 

2.8. В двигателе внутреннего сгорания, работающего по 

циклу Отто (рис.23), горючая смесь, вошедшая в цилиндр, адиа-

батно сжимается (1-2); воспламенённая искрой, изохорно сго-

рает (2-3); адиабатно расширяется (3-4) и выбрасывается в ат-

мосферу (4-1).   Работа производится не за счёт теплоты извне, 
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а за счёт внутренней энергии рабочего вещества (горючей 

смеси). Определить к.п.д. двигателя и выразить его сначала че-

рез  Т1, Т2, Т3, Т4, а затем через  параметр цикла 
2

1

V

V
  (степень 

сжатия). 

 

Рисунок 23 – цикл Отто 

 

РЕШЕНИЕ 

На изоэнтропийных (𝑆 = 𝑐𝑜𝑛𝑠𝑡) участках цикла 1-2 и 3-4  

𝛿𝑄12 = 𝛿𝑄34 = 0.  

На изохорных (𝑉 = 𝑐𝑜𝑛𝑠𝑡) участках 2-3 и 4-1 

𝛿𝑄23 = 𝐶𝑉𝑑𝑇 + 𝑝𝑑𝑉 = 𝐶𝑉𝑑𝑇, 

𝛿𝑄41 = 𝐶𝑉𝑑𝑇 + 𝑝𝑑𝑉 = 𝐶𝑉𝑑𝑇. 

Поэтому  

𝑄1 = 𝑄23 = 𝐶𝑉(𝑇3 − 𝑇2), 

𝑄2 = 𝑄41 = 𝐶𝑉(𝑇1 − 𝑇4) = −𝐶𝑉(𝑇4 − 𝑇1). 

К.п.д. цикла  

𝜂 =
𝑄23 − |𝑄41|

𝑄23
= 1 −

𝑇4 − 𝑇1

𝑇3 − 𝑇2
 .                    (2.41) 
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Выразим 𝜂 через параметр цикла 𝜀. Используем уравнение адиа-

баты 

𝑇𝑉𝛾−1 = 𝑐𝑜𝑛𝑠𝑡. 

Тогда будем иметь 

𝑇2 = 𝑇1𝜀
𝛾−1, 𝑇3 = 𝑇4𝜀

𝛾−1.                 (2.42) 

Подставляя (2.42) в (2.41), получим 

𝜂 = 1 −
𝑇4 − 𝑇1

(𝑇4 − 𝑇1)𝜀
𝛾−1

 , 

или окончательно 

𝜂 = 1 −
1

𝜀𝛾−1
 .                                   (2.43) 

2.9. Концентрация электронов в серебре  𝑛 = 5,85 ∙

1028м−3. Определить температуру вырождения электронного 

газа. Является ли газ с такой концентрацией вырожденным при 

комнатной температуре? 

 

РЕШЕНИЕ 

Газ называется вырожденным (или квантовым), если его 

температура много меньше температуры вырождения данного 

газа: 

𝑇 ≪ 𝑇0,                                              (2.44) 

 

где  

    𝑇0 =
ℎ2

2𝜋𝑚𝑘
 𝑛

2
3⁄ .                                   (2.45) 

Из этих формул  видно, что условия вырождения выполняются 

при достаточно низкой температуре и высокой концентрации 𝑛 

частиц.  
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Проведём оценку 𝑇0 для серебра: 

𝑇0 =
(6,62 ∙ 10−34)2

2 ∙ 3,14 ∙ 9,1 ∙ 10−31 ∙ 1.38 ∙ 10−23
(5,85 ∙ 1028)

2
3⁄ ≈

≈ 6,39  ∙ 104𝐾.                                                                            (2.46) 

Согласно условию (2.44), электронный газ в серебре при ком-

натной температуре ~300 К является сильно вырожденным  

газом. 

2.10. Показать, что давление и энтропия являются инвари-

антами преобразований Лоренца (не меняются при переходе  

от одной инерциальной системы отсчёта в другую).  

 

РЕШЕНИЕ 

1. Из специальной теории относительности известно, что 

при переходе от одной ИСО к другой продольная составляющая 

силы не меняется, а поперечные составляющие уменьшаются. 

Закон преобразования силы, действующей на поверхность тела, 

движущегося вдоль оси х, следующий: 

𝐹𝑥 = 𝐹𝑥
′, 𝐹𝑦 = 𝐹𝑦

′√1 − 𝛽2, 𝐹𝑧 = 𝐹𝑧
′√1 − 𝛽2, 

где 𝛽 = 𝑣 𝑐.⁄   

Давление определяется как отношение силы, действующей 

перпендикулярно поверхности, к площади этой поверхности. Так 

как поверхность, перпендикулярная оси x не испытывает сокра-

щения Лоренца, а поверхности, перпендикулярные двум другим 

осям, сокращаются в отношении √1 − 𝛽2, то 𝑝 = 𝑝′. 

2. Согласно принципу Больцмана (статистическое выраже-

ние для энтропии) 

𝑆 = 𝑘ℓ𝑛𝑊, 
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энтропия макросостояния системы определяется числом реали-

зующих его микросостояний. Но число состояний и число ча-

стиц N не зависит от скорости тела 𝑣 и, следовательно, не меня-

ется при преобразованиях Лоренца. Таким образом, энтропия 

является инвариантом преобразований Лоренца. 
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6 Структура билета курсового экзамена 

по дисциплине «Теоретическая физика»  

и требования к оцениванию ответов студентов 

 

 

В восьмом семестре по учебному плану предусмотрен эк-

замен по дисциплине «Теоретическая физика». На экзамен вы-

носится материал, изучавшийся на разных видах занятий:  

на лекциях, практических занятиях, лабораторных занятиях. 

Часть вопросов, выносимых на экзамен, студенты бакалавриата 

изучают самостоятельно, что предусмотрено ФГОС ВО и отра-

жено в рабочей программе дисциплины «Теоретическая физика».  

Цель экзамена – выявить качество знаний студентов по 

теоретическим вопросам физики и умения применять свои зна-

ния в решении физических задач.  

Экзаменационные билеты содержат материал, изучаемый 

на протяжении двух семестров, т.е. годовой курс, включающий 

разделы «Нерелятивистская квантовая механика» и «Статисти-

ческая физика и термодинамика». 

По другим разделам курса ТФ (классическая механика, 

классическая (максвелловская) электродинамика, специальная 

теория относительности, физика твёрдого тела, физика атом-

ного ядра и элементарных частиц) предусмотрен зачёт. 

Каждый билет состоит из трех вопросов. Первые два во-

проса – теоретические (первый – по квантовой механике, вто-

рой – по статистической физике и термодинамике) Третий во-

прос –задача по одному из этих разделов. 

 Поскольку в 7 семестре предусмотрен зачёт по разделу 

«Квантовая механика» как форма промежуточного контроля 
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знаний, первый теоретический вопрос экзаменационного билета 

связан исключительно  с принципиальными положениями кван-

товой механики. Такие вопросы, как экспериментальные ос-

новы квантовой механики, развитие квантовой теории от работ 

М. Планка (1900 г.) до первой квантовой теории атома Н. Бора 

.(1913 г.), эпоха «старой квантовой теории» с 1913 по 1922 гг., 

доказательство теорем, входящих в математический аппарат 

квантовой механики, не включаются в содержание экзаменаци-

онного билета. Основное содержание первого вопроса отражает 

достижения в период «золотого века теоретической физики» 

(1924-1927 гг.), в рамках которого были созданы матричная 

квантовая механика В. Гейзенберга (1925 г.), волновая механика 

Э. Шрёдингера (1926 г.) и векторная формулировка квантовой 

механики П. Дирака (1926-27 гг.). 

При ответе на первый вопрос студент должен продемон-

стрировать:  

          – знание фундаментальных идей, понятий, принципов 

квантовой механики; 

–  умение последовательно и доказательно излагать обсуж-

даемый вопрос с применением необходимого математического 

аппарата; 

-– понимание прикладных аспектов квантовой механики, 

роли первой и второй квантовых революций (в то время как пер-

вая квантовая революция привела к созданию технологий, осно-

ванных на управлении коллективными квантовыми явлениями; 

вторая квантовая революция позволяет управлять сложными 

квантовыми системами на уровне отдельных частиц – атомов, фо-

тонов, электронов – и оперирует такими понятиями, как запутан-

ные квантовые состояния, квантовая телепортация, квантовая 

криптография, квантовые вычисления, квантовая сенсорика). 
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Второй вопрос экзаменационного билета относится к клас-

сической и квантовой статистике идеальных систем и к обосно-

ванию законов  феноменологической термодинамики на основе 

статистической физики. Студенты должны продемонстрировать 

знание основных понятий и принципов статистической физики, 

законов статистической термодинамики, метода термодинами-

ческих функций, умение применять статистическую физику для 

изучения свойств газов, знать основы теории флуктуаций и тер-

модинамики неравновесных процессов. 

Ответ на третий вопрос должен содержать развернутое ре-

шение задачи с обоснованием физического смысла получаемых 

результатов.  

Оценка за ответ на курсовом экзамене по дисциплине 

«Теоретическая физика» будет формироваться как результиру-

ющая следующих  составляющих: 

1) оценки, полученной за ответ по первому теоретиче-

скому вопросу билета;  

2) оценки, полученной за ответ по второму теоретиче-

скому вопросу билета; 

3) оценки, полученной за решение задачи; 

4) рейтинга текущей работы на протяжении изучения 

курса. 

Требования к оцениванию ответа на теоретические во-

просы билета. 

Оценка «отлично» ставится, если:  

-– даётся обстоятельный ответ, содержащий вывод основ-

ных формул и соотношений с объяснением их физического 

смысла;  
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– студент демонстрирует глубину понимания материала, 

усвоение  основных идей,  принципов, понятий, расчётных ме-

тодов; 

– приводятся правильные ответы на дополнительные во-

просы.  

Оценка «хорошо» ставится, если:  

– при ответе допущены некоторые неточности; 

–  имеются затруднения в выяснении физического смысла 

обсуждаемых результатов; 

– возникают затруднения при ответе на некоторые допол-

нительные  вопросы, но в целом демонстрируется  достаточно 

хорошее  понимание основных вопросов курса. 

Оценка «удовлетворительно» ставится, если:  

– допущены грубые ошибки, свидетельствующие о недо-

понимании материала; 

-– студент не дает правильных ответов на дополнительные 

вопросы. 

Оценка «неудовлетворительно» ставится, если:  

– студент затрудняется объяснить написанное; 

 – студент демонстрирует незнание основных формул  

и принципиальных   положений; 

–  отсутствует ответ на теоретический вопрос билета. 

Требования к оцениванию решения задачи, представлен-

ной в билете. 

Оценка «отлично» ставится, если студент:  

– решил задачу правильно; 

 – дал объяснение физического смысла полученных ре-

зультатов; 
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– провел аргументированно, на основе знаний теоретиче-

ского материала вывод необходимых формул; 

– знает единицы измерения величин.  

Оценка «хорошо» ставится, если студент решил задачу в 

целом правильно, но:  

– демонстрирует затруднения в объяснении физического 

смысла полученных результатов; 

– обнаруживает поверхностное владение терминологиче-

ским аппаратом; 

– демонстрирует незнание единиц измерения величин.  

Оценка «удовлетворительно» ставится, если студент:  

– решил задачу с ошибками; 

– обнаружил слабое владение терминологическим аппа-

ратом; 

– провел вывод формулы для расчета с грубыми ошибками 

в аргументации; 

– обнаружил незнание единиц измерения величин.  

Оценка «неудовлетворительно» ставится, если:  

– задача решена с серьёзными ошибками; 

– задача не решена. 

        Подготовка к экзамену по теоретической физике предпола-

гает систематическую работу над курсом в течение года. При изу-

чении теоретической физики очень важно посещать лекции, по-

дробно записывать, а затем анализировать излагаемый на них ма-

териал. Это обусловлено тем, что в учебных пособиях не содер-

жатся детальные математические преобразования. Стандартный 

метод изложения сводится, как правило, к замечаниям типа: «как 

нетрудно показать», «после несложных преобразований полу-

чим» и т.д. Однако за этими так называемыми «несложными  
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преобразованиями» обычно скрываются несколько страниц ма-

тематических преобразований, прежде чем получится требуе-

мый результат! Эту специфику учебных пособий необходимо 

иметь в виду. В процессе чтения лекций материал излагается до-

казательно, подробно, со всеми промежуточными выкладками. 

Присутствующий на лекции студент становится соучастником 

процесса получения всех основных физических результатов. 

Только таким способом, постигая шаг за шагом весьма непро-

стые вопросы, можно понять логику дисциплины и её основное 

содержание. 

       В процессе самостоятельной работы над курсом лекций 

необходимо уделить внимание основным понятиям, идеям, 

принципам и расчётным методам; научиться самостоятельно 

выводить все главные формулы и уравнения; развивать умение 

анализировать физический смысл получаемых результатов. При 

подготовке к экзамену необходимо ориентироваться на кон-

спекты лекций, материал практических занятий, а также на ре-

комендуемую литературу. 
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Заключение 

 

 

 При изучении квантовой механики и статистической тер-

модинамики открываются возможности уникального языка тео-

ретической физики, посредством которого удаётся последова-

тельно и элегантно излагать основные закономерности поведе-

ния как отдельных микрообъектов, так и совокупности боль-

шого числа частиц. Два этих раздела курса теоретической фи-

зики имеют решающее значение для понимания современной 

физической картины мира. Они являются фундаментом для по-

следующего изучения «синтетических» дисциплин, таких как 

физика твёрдого тела (электронная теория вещества) или фи-

зика атомного ядра и элементарных частиц. Методы квантовой 

механики и статистической физики пронизывают не только все 

основные разделы современной физики, но и находят широкое 

применение в других естественно-научных областях (биологии, 

медицине, информатике и т.д.). 

 Теоретические положения и основные задачи курса нере-

лятивистской квантовой механики рассмотрены в данном учеб-

ном пособии с учётом трёх формулировок квантовой механики: 

матричной квантовой механики Гейзенберга, волновой меха-

ники Шрёдингера и векторной формулировки Дирака. 

Лейтмотивом раздела «Статистическая термодинамика» 

является органичное объединение феноменологического и мик-

роскопического подходов к описанию основных понятий и за-

конов. При этом наряду с классической статистической физикой 

значительное место отведено вопросам квантовой статистики. 

Квантово-механическое описание макроскопических систем 
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даёт возможность достаточно ясно определить понятия микро-

состояния, статистического распределения и энтропии системы.   

Центральным пунктом статистической физики равновес-

ных систем является каноническое распределение Гиббса. По-

этому значительное количество задач связано с приложениями 

распределения Гиббса. 
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А. С. Сенкевич. – Москва : Высшая школа, 1969. – 288 с. – Текст : 

непосредственный. 

18. Садовский, М. В. Лекции по статистической физике /  

М. В. Садовский. – Москва; Ижевск : РХД, 2003. – 336 с. – ISBN: 5-

93972-240-7. – Текст : непосредственный. 

19. Серова, Ф. Г. Сборник задач по теоретической физике. Кван-

товая механика, статистическая физика / Ф. Г. Серова, А. А. Янкина. – 

Москва : Просвещение, 1979. – 192 с. – Текст : непосредственный. 
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Приложение А 

(справочное) 

 

Фундаментальные физические константы,  

используемые в квантовой механике  

и статистической термодинамике 

 

 

В теоретической физике широко применяется гауссова 

система единиц, где основными механическими величинами 

являются сантиметр, грамм, секунда. Для квантовой механики 

система СИ является неудобной и менее употребительной.  

В таблице 7 приведены фундаментальные физические посто-

янные, используемые в квантовой механике, в гауссовой си-

стеме единиц. 



Таблица А.1 

Названия Значения 

Постоянная Планка (квант действия)  ℎ = 6,62 ∙ 10−27эрг ∙ с 

Приведённая постоянная Планка ℏ = ℎ 2𝜋⁄ = 1,054 ∙ 10−27эрг ∙ с 

Скорость света в вакууме  с = 3 ∙ 1010см/с 

Заряд электрона e = 4,8 ∙ 10−10 СГСЭ  

Масса покоя электрона 𝑚𝑒 = 9,1 ∙ 10−28 г 

Масса покоя протона 𝑚𝑝 = 1,67 ∙ 10−24 г 

Комптоновская длина волны 
Λ =

ℎ

𝑚𝑒𝑐
= 0,024 Å ≈ 2 ∙ 10−10см 

Магнетон Бора (магнитный момент электрона) 
𝜇Б =

𝑒ℏ

2𝑚𝑒𝑐
= 9,27 ∙ 10−21 эрг Гс⁄  

Постоянная тонкой структуры 
𝛼 =

𝑒2

ℏ𝑐
=

1

137
 

Боровский радиус 
𝑎 =

ℏ2

𝑚𝑒2
= 0,53 ∙ 10−8 см = 0,53 Å 

Постоянная Ридберга для атома водорода 
𝑅𝐻 =

𝑚𝑒4

4𝜋ℏ3𝑐
= 109737,3 см−1  



При необходимости нужно уметь переходить от одной системы единиц к другой, используя 

связь между соответствующими величинами, например: 

1Дж = 107 эрг, 

1эВ = 1,6 ∙ 10−19 Дж = 1,6 ∙ 10−12эрг, 

1Тл = 104Гс. 

В теории тепловых явлений может быть использована как система единиц СИ, так и система Гаусса. 

Таблица А.2 

Названия Значения 

Постоянная Больцмана 
𝑘 = 1,38 ∙ 10−16

эрг

𝐾
= 1,38 ∙ 10−23

Дж

𝐾
 

Универсальная газовая постоянная 
𝑅 = 8,31

Дж

моль ∙ 𝐾
 

Число Авогадро 
𝑁𝐴 = 6,02 ∙ 1023

1

моль
 

Постоянная Стефана - Больцмана 
𝜎 =

2𝜋5𝑘4

15ℎ3𝑐2
= 5,67 ∙ 10−8

Вт

м2𝐾4
 

 Объём моля идеального газа при н.у.  

(𝑇 = 273,15 𝐾; 𝑝 = 101325 Па) 
𝑉𝑚 =

𝑅𝑇

𝑝
= 22,4

л

моль
= 22,4 ∙ 10−3

м3

моль
 

Число Лошмидта 
𝐿 =

𝑁𝐴

𝑉𝑚
= 2,69 ∙ 1019

1

см3
= 2,69 ∙ 1025

1

м3
 



Приложение Б 

(справочное) 

 

Некоторые определённые интегралы 

 

 

Б.1 Интегралы Пуассона 

Интегралы Пуассона – это интегралы вида  

ℐ2𝑛+1 = ∫ 𝑒−𝛼𝑥2
 𝑥2𝑛+1𝑑𝑥,                           (Б. 1.1)

+∞

−∞

 

ℐ2𝑛 = ∫ 𝑒−𝛼𝑥2
 𝑥2𝑛𝑑𝑥.                                 (Б. 1.2)

+∞

−∞

 

Для вычисления этих интегралов необходимо знать табличные 

значения для следующих двух интегралов: 

ℐ1 = ∫ 𝑒−𝛼𝑥2
𝑥  𝑑𝑥 =

1

𝛼
,                             (Б. 1.3)

+∞

−∞

 

ℐ0 = ∫ 𝑒−𝛼𝑥2
 𝑑𝑥 = √

𝜋

𝛼
 .                             (Б. 1.4)

+∞

−∞

 

Тогда интегралы типа (Б.1..1) и (Б.1.2) могут быть выражены че-

рез интегралы (Б.1.3) и (Б.1.4) как производные по параметру 𝛼. 

Например, 

ℐ3 = ∫ 𝑒−𝛼𝑥2
 𝑥3 𝑑𝑥 = −

𝜕

𝜕𝛼
∫ 𝑒−𝛼𝑥2

𝑥  𝑑𝑥 = −
𝜕

𝜕𝛼
ℐ1

∞

−∞

=
1

𝛼2
.            

+∞

−∞
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Аналогично 

ℐ2 = −
𝜕

𝜕𝛼
∫ 𝑒−𝛼𝑥2

 𝑑𝑥

+∞

−∞

= −
𝜕

𝜕𝛼
ℐ0 =

1

2
√

𝜋

𝛼3
 , 

ℐ4 = −
𝜕

𝜕𝛼
∫ 𝑥2𝑒−𝛼𝑥2

 𝑑𝑥

+∞

−∞

= −
𝜕

𝜕𝛼
ℐ2 =

3

4
√

𝜋

𝛼5
  . 

Для курсов квантовой механики и статистической физики 

в первую очередь необходимы интегралы типа (Б.1.2). Наиболее 

употребительными являются интегралы, приведённые в таб-

лице Б.1. 

Таблица Б.1 – Интегралы Пуассона 

Интегралы Пуассона Значение 

ℐ0 = ∫ 𝑒−𝛼𝑥2
 𝑑𝑥            

+∞

−∞

 
√

𝜋

𝛼
  

ℐ2 = ∫ 𝑒−𝛼𝑥2
𝑥2 𝑑𝑥            

+∞

−∞

 

1

2
√

𝜋

𝛼3
  

ℐ4 = ∫ 𝑒−𝛼𝑥2
𝑥4 𝑑𝑥            

+∞

−∞

 

3

4
√

𝜋

𝛼5
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Б.2 Некоторые определённые интегралы квантовой 

статистики 

1)∫
𝑥3𝑑𝑥

𝑒𝑥 − 1
=

𝜋4

15

∞

0

 .                                               

2)∫
𝑥2𝑑𝑥

𝑒𝑥 − 1
= 2,404.

∞

0

                                           

3)∫
√𝑥𝑑𝑥

𝑒𝑥 − 1
=

√𝜋

2
∙ 2,612 = 2,31.

∞

0

                          

4)∫
𝑥 𝑑𝑥

𝑒𝑥 − 1
=

𝜋2

6

∞

0

.                                                    

5)∫
𝑥

3
2⁄ 𝑑𝑥

𝑒𝑥 − 1
=

3

4
√𝜋 ∙ 1,341.

∞

0

                                       

6)∫ 𝑥
3

2⁄  𝑒−𝑥𝑑𝑥 =
3

4
√𝜋.

∞

0

                                         

7)∫ √𝑥 𝑒−𝑥𝑑𝑥 =
√𝜋

2
.

∞

0

                                             

Б.3. Интеграл ошибок 

В статистической физике часто используется интеграл 

ошибок (например, в задачах на распределение частиц идеаль-

ного газа по скоростям – распределение Максвелла). Он опре-

деляется следующим образом: 

Ф(𝑧) = 𝑒𝑟𝑓(𝑧) =
2

√𝜋
∫𝑒−𝑥2

 𝑑𝑥, 0 ≤ 𝑧 ≤ 3      

𝑧

0

(Б. 3.1) 
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Некоторые значения интеграла (Б.3.1) приведены в таб-

лице 10. 

Таблица 10 – Некоторые значения интеграла ошибок 

z 0.5 1 1.08 1.13 1.2 2 

𝑒𝑟𝑓(𝑧) 0,5205 0,8427 0,8733 0,8900 0,9103 0,9953 

 

Значения интеграла (Б.3.1) при других 𝑧 можно найти в учеб-

нике В.Ф. Ноздрёва [17]  
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Приложение В  

(справочное) 

  

Дельта-функция Дирака 

 

 

Дельта-функция была введена в физику выдающимся ан-

глийским физиком-теоретиком Полем Дираком. Она имеет мак-

симум при x=0 и быстро убывает в обе стороны от этой точки. 

Примером процесса, для описания которого в курсе «Методы 

математической физики»  используется  𝛿 −функция Дирака, 

является теплопроводность. Распределение температуры в 

стержне для различных моментов времени имеет дельтаобраз-

ный вид (рис. В.1). 

 

Рисунок В.1 – Распределение температуры в стержне  
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𝛿 −функция определяется следующим образом: 

𝛿(𝑥) = {
0, если 𝑥 ≠ 0  
∞, если 𝑥 = 0; 

 

∫ 𝛿(𝑥)𝑑𝑥 = 1;       

+∞

−∞

∫ 𝛿(𝑥 − 𝑎)𝑑𝑥 = 1.          

+∞

−∞

 

Свойства 𝛿 −функции: 

1) ∫ 𝑓(𝑥) 𝛿(𝑥)𝑑𝑥 = 𝑓(0);       

+∞

−∞

2) ∫ 𝑓(𝑥) 𝛿(𝑥 − 𝑎)𝑑𝑥 = 

+∞

−∞

= 𝑓(𝑎);        

3)     𝛿(𝑥) = 𝛿(−𝑥);   

4) 𝛿(𝛼𝑥) =
1

|𝛼|
 𝛿(𝑥), где 𝛼 = 𝑐𝑜𝑛𝑠𝑡. 

Существует достаточно много функций, которые могут 

быть представлены  в виде 𝛿 −функции. Приведём некоторые 

примеры: 

1) 𝛿(𝑥) = lim
𝐿→∞

𝑠𝑖𝑛(𝐿𝑥)

𝜋𝑥
 ;  2)  𝛿(𝑥) =

1

√𝜋
𝑒−𝑥2

; 3)  𝛿(𝑥) =

=
1

2𝜋
∫ 𝑒𝑖𝑘𝑥𝑑𝑘.      

+∞

−∞
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Приложение Г. 

(справочное) 

  

Некоторые специальные функции 

 

 

№ 

Н
аз

в
ан

и
е 

у
р
ав

н
ен

и
я
 

Вид уравнения 
Функции, являющиеся решением дан-

ного уравнения 
Примеры задач 

1 2 3 4 5 

1 

Б
ес

се
л
я
 

𝒚′′ +
𝟏

𝒙
𝒚′ + (𝟏 −

𝒏𝟐

𝒙𝟐
)𝒚 = 𝟎  

Функции Бесселя  

(цилиндрические функции) 

𝑦 = 𝐽𝑛(𝑥)

= ∑(−1)𝑘
1

Г(𝑘 + 1)Г(𝑘 + 1 + 𝑛)
(
𝑥

2
)
2𝑘+𝑛

∞

𝑘=0

 

 

Решение урав-

нения Лапласа в 

цилиндриче-

ских координа-

тах; 

колебания круг-

лой мембраны 
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Продолжение таблицы 

1 2 3 4 5 

2 

Л
еж

ан
д

р
а 

[(𝟏 − 𝒙𝟐)𝒚′]′ + 𝝀𝒚 = 𝟎  

Полиномы Лежандра (формула  

Родрига) 

𝑦 = 𝑃ℓ(𝑥) =
1

2ℓℓ!

𝑑ℓ(𝑥2 − 1)ℓ

𝑑𝑥ℓ
 

Движение в 

поле централь-

ных сил (атом 

водорода) 

3 

П
р
и

со
ед

и
н

ён
н

ы
х

 ф
у
н

к
ц

и
й

 

Л
еж

ан
д

р
а 

[(𝟏 − 𝒙𝟐)𝒚′]′ + (𝝀 −
𝒎𝟐

𝟏 − 𝒙𝟐
)𝒚 = 𝟎  

Присоединённые полиномы  

Лежандра 

𝑃ℓ
𝑚(𝑥) = (1 − 𝑥2)

|𝑚|
2

𝑑|𝑚|

𝑑𝑥|𝑚|
𝑃ℓ(𝑥) 

Движение в 

поле централь-

ных сил (атом 

водорода) 
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Продолжение таблицы 

1 2 3 4 5 

4 

Ч
еб

ы
ш

ёв
а 

–
 

Л
аг

ер
р
а 

𝒙𝒚′′ + (𝟏 − 𝒙)𝒚′ +  𝒏𝒚 = 𝟎  

Полиномы Лагерра 

𝑦 = 𝐿𝑛(𝑥) =
1

𝑛!
𝑒𝑥

𝑑𝑛

𝑑𝑥𝑛
 (𝑥𝑛 𝑒−𝑥) 

Движение в ку-

лоновском 

поле (атом во-

дорода) 

5 

Ч
еб

ы
ш

ёв
а–

Э
р

м
и

та
 

𝒚′′ − 𝟐𝒙𝒚′ + 𝝀𝒚 = 𝟎  

Полиномы Эрмита − Чебышёва 

𝑦 = 𝐻𝑛(𝑥) = (−1)𝑛𝑒𝑥2 𝑑𝑛

𝑑𝑥𝑛
 (𝑒−𝑥2

) 

Линейный гар-

монический ос-

циллятор 
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Приложение Д 

(справочное) 

 

Основные формулы 

 

 

Раздел 1 Квантовая механика 

1.1.  Формула Планка для спектральной плотности равно-

весного излучения 

𝜌𝜈 =
8𝜋𝜈2

с3
 ∙  

ℎ𝜈

𝑒
ℎ𝜈
𝑘𝑇  − 1

 , 

где ℎ − постоянная Планка. 

1.2.  Энергия и импульс фотона в теории фотонов Эйн-

штейна 

𝜀 = ℎ𝜈,                 

𝑝 =
ℎ𝜈

𝑐
=

ℎ

𝜆
 .        

1.3.  Комптоновская длина волны 

Λ =
ℎ

𝑚0𝑐
 . 

1.4.  Второй постулат Бора 

ℎ𝜈𝑚𝑛 = 𝐸𝑚 − 𝐸𝑛 . 

1.5.  Обобщённая формула Бальмера 

1

𝜆𝑚𝑛
= 𝑅 (

1

𝑛2
−

1

𝑚2
), 

где 𝑅 − постоянная Ридберга. 

 

 



127 
 

1.6.  Правило квантования круговых орбит в теории водо-

родоподобного атома по Бору 

𝑟𝑚𝓋 = 𝑛ℏ. 

1.7.  Радиус стационарных орбит, скорость электрона на 

стационарных орбитах, энергетический спектр водородоподоб-

ного атома в теории Бора: 

𝑟𝑛 =
𝑛2ℏ2

𝑚𝑍𝑒2
 , 

𝓋𝑛 =
𝑍𝑒2

𝑛ℏ
 , 

𝐸𝑛 = −
𝑚𝑍2𝑒4

2𝑛2ℏ2
 . 

1.8.  Связь между волновыми и корпускулярными харак-

теристиками микрочастицы согласно гипотезе де Бройля 

𝜈 =
𝜀

ℎ
 , 

𝜆 =
ℎ

𝑝
 .   

1.9.  Волновая функция де Бройля для свободной частицы 

Ψ = 𝐴 𝑒
𝑖
ℏ
(𝑝  𝑟 −𝐸𝑡). 

1.10.  Уравнение Шрёдингера в общем виде 

𝑖ℏ
𝜕Ψ

𝜕𝑡
=  −

ℏ2

2𝑚
∇2Ψ + UΨ, 

где U − потенциальная энергия. 

1.11.  Стационарное уравнение Шрёдингера 

−
ℏ2

2𝑚
∇2Ψ + UΨ = 𝐸Ψ. 

1.12.  Плотность вероятности  

𝓌 = |Ψ|2. 
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1.13.  Плотность тока вероятности 

𝑗𝓌 =
𝑖ℏ

2𝑚
(Ψ∇Ψ∗ − Ψ∗∇Ψ). 

1.14.  Оператор импульса 

𝑝̂𝑥 = −𝑖ℏ
𝜕

𝜕𝑥
 , 𝑝̂𝑦 = −𝑖ℏ

𝜕

𝜕𝑦
 ,   𝑝̂𝑧 = −𝑖ℏ

𝜕

𝜕𝑧
 ,

 𝑝 ̂ = −𝑖ℏ ∇ .

 

1.15.  Оператор момента импульса в декартовой системе 

координат: 

𝐾̂𝑥 = (𝑦𝑝̂𝑧 − 𝑧𝑝̂𝑦) = −𝑖ℏ (𝑦
𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
) , 

𝐾̂𝑦 = (𝑧𝑝̂𝑥 − 𝑥𝑝̂𝑧) = −𝑖ℏ (𝑧
𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
) , 

𝐾̂𝑧 = (𝑥𝑝̂𝑦 − 𝑦𝑝̂𝑥) = −𝑖ℏ (𝑥
𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
) , 

𝐾⃗⃗ ̂ = −𝑖ℏ[𝑟 ∇]. 

1.16. Оператор момента импульса в сферических коорди-

натах: 

 

𝐾̂𝑥 = 𝑖ℏ (𝑠𝑖𝑛𝜑
𝜕

𝜕𝜃
+ 𝑐𝑜𝑠𝜑 𝑐𝑡𝑔 𝜃

𝜕

𝜕𝜑
), 

𝐾̂𝑦 = −𝑖ℏ (𝑐𝑜𝑠𝜑 
𝜕

𝜕𝜃
− 𝑠𝑖𝑛𝜑 𝑐𝑡𝑔 𝜃

𝜕

𝜕𝜑
), 

𝐾̂𝑧 = −𝑖ℏ
𝜕

𝜕𝜑
 , 

𝐾̂2 = − ℏ2 [
1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
) +

1

𝑠𝑖𝑛2𝜃

𝜕2

𝜕𝜑2
]. 

1.17.  Оператор энергии (гамильтониан) 

𝐻̂ = −
ℏ2

2𝑚
∇2 + 𝑈. 

1.18.  Принцип суперпозиции состояний 
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Ψ = с1Ψ1 + с2Ψ2,       Ψ = ∑𝑐𝑛Ψ𝑛

𝑛

, 

где с𝑛 –- произвольные комплексные числа. 

1.19. Определение эрмитового (самосопряжённого) опера-

тора 

∫ Ψ𝑚
∗

𝑉

𝐿̂Ψ𝑛𝑑𝑉 = ∫(𝐿̂𝛹𝑚)
∗
𝛹𝑛𝑑𝑉

𝑉

, 

𝐿̂ = 𝐿̂+. 

1.20.  Условие ортонормировки волновых функций 

∫ Ψ𝑚
∗

𝑉

Ψ𝑛𝑑𝑉 = 𝛿𝑚𝑛 = {
1 при m = n,
0 при m ≠ n ,

 

или в обозначениях Дирака 

〈𝑚|𝑛〉 = 𝛿𝑚𝑛 = {
1 при m = n,
0 при m ≠ n,

 

где 𝛿𝑚𝑛 − дельта-символ Кронекера,  〈Ψ𝑚| −бра-вектор, |Ψ𝑛〉 −

 кет-вектор. 

1.21.  Среднее значение физической величины L в состоя-

нии Ψ 

𝐿̅ = ∫ Ψ∗

𝑉

 𝐿̂ ΨdV, 

или  

𝐿̅ = ⟨Ψ|𝐿̂|Ψ⟩. 

1.22.  Условие коммутативности двух операторов 

𝑀̂𝐿̂ − 𝐿̂𝑀̂ = 0,  

или  



130 
 

[𝑀̂, 𝐿̂]
−

= 0. 

1.23.  Неравенство Гейзенберга для координаты и им-

пульса 

∆𝑥 ∙ ∆𝑝𝑥 ≥
ℏ

2
 . 

1.24.  Неравенство Гейзенберга для энергии и времени 

∆𝐸 ∙ ∆𝑡 ≥ ℎ. 

1.25.  Правило дифференцирования оператора по времени 

𝑑𝐿̂

𝑑𝑡
=

𝜕𝐿̂

𝜕𝑡
+ {𝐻̂, 𝐿̂},  

где  

{𝐻̂, 𝐿̂} =
𝑖

ℏ
(𝐻̂𝐿̂ − 𝐿̂𝐻̂) 

квантовые скобки Пуассона. 

1.26.  Квантовое обобщение уравнения Гамильтона – 

Якоби (КОУГЯ) 

−
𝜕𝑆

𝜕𝑡
=

(∇𝑆)2

2𝑚
+ 𝑈 −

𝑖ℏ

2𝑚
∇2𝑆, 

где 𝑆 − квантовое обобщение классической функции действия. 

1.27.  Стационарное КОУГЯ 

(∇𝑆)2

2𝑚
+ 𝑈 −

𝑖ℏ

2𝑚
∇2𝑆 = 𝐸. 

 

1.28.  Уровни энергии и волновые функции частицы в од-

номерной бесконечно глубокой потенциальной яме: 
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𝐸𝑛 =
𝑛2ℎ2

8𝑚ℓ2
,  

Ψ𝑛 = Asin
𝑛𝜋

ℓ
𝑥, 

где ℓ − ширина ямы. 

1.29.  Уровни энергии и волновые функции стационарных 

состояний ЛГО 

𝐸𝑛 = ℏ𝜔 (𝑛 +
1

2
) , 𝑛 = 0,1,2,3, … 

Ψ𝑛 = 𝐶𝑛𝑒
− 

𝜉2

2 ∙ 𝐻𝑛(𝜉), 

где 𝐶𝑛 − нормировочный множитель 

𝐶𝑛 =
1

√2𝑛𝑛! 𝑥0√𝜋 

 , 

 𝐻𝑛(𝜉) − полином Чебышёва – Эрмита  

𝐻𝑛(𝜉) = (−1)𝑛𝑒𝜉2 𝑑𝑛

𝑑𝜉𝑛
(𝑒−𝜉2

), 

𝜉 =
𝑥

𝑥0
, 𝑥0 = √

ℏ

𝑚𝜔
  . 

1.30.  Правило отбора для ЛГО 

Δ𝑛 = ±1, 

с учётом которого получаются ненулевые матричные элементы 

координаты 
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𝑥𝑛−1,𝑛 = 𝑥0√
𝑛

2
  ,    𝑥𝑛+1,𝑛 = 𝑥0√

𝑛 + 1

2
 . 

1.31. Коэффициенты отражения 𝑅  и прозрачности 𝐷  при 

движении частицы в поле потенциальной ступеньки: 

𝑅 = (
𝑘1 − 𝑘2

𝑘1 + 𝑘2
)
2

, 

𝐷 =
4𝑘1𝑘2

(𝑘1 + 𝑘2)
2
 , 

где  𝑘1 и 𝑘2 – волновые числа в области 𝑈 = 0 и в области  

𝑈 = 𝑈0. 

1.32.  Вероятность прохождения частицы через потенци-

альный барьер прямоугольной формы 

𝐷 = 𝐷0𝑒
− 

2
ℏ√2𝑚(𝑈0−𝐸) ℓ , 

где ℓ − толщина барьера,  

𝐷0 =
16𝐸(𝑈0 − 𝐸)

𝑈0
2  . 

1.33.  Коэффициент прозрачности потенциального барьера 

произвольной формы 

𝐷 = 𝐷0 𝑒𝑥𝑝 {−
2

ℏ
∫ √2𝑚[𝑈(𝑥) − 𝐸] 𝑑𝑥 

𝑥2

𝑥1

}. 

1.34.  Фотонные пары в состояниях Белла как пример запу-

танных квантовых состояний: 

|Ψ−〉 =
|0〉1 |1〉2 − |1〉1 |0〉2

√2
 ,   

|Ψ+〉 =
|0〉1 |1〉2 + |1〉1 |0〉2

√2
 , 
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|Ф−〉 =
|0〉1 |0〉2 − |1〉1 |1〉2

√2
 , 

|Ф+〉 =
|0〉1 |0〉2 + |1〉1 |1〉2

√2
 . 

Они представляют собой суперпозицию состояний пар одинаково 

поляризованных фотонов (|↕↕〉 = |00〉 и |↔↔〉 = |11〉) и ортого-

нально поляризованных фотонов (|↕↔〉 = |01〉 и |↔↕〉 = |10〉. 

1.35.  Квантование момента импульса 𝐾,  его проекции 

𝐾𝑧 и магнитного момента 𝜇𝑧 при движении микрочастицы в цен-

трально-симметричном поле:: 

𝐾 = ℏ√ℓ(ℓ + 1), Kz = 𝑚ℏ, 𝜇𝑧 =  𝑚𝜇Б , 

где ℓ = 0, 1, 2, 3… – орбитальное квантовое число,  

𝑚 = 0, 1, 2, 3, … , ℓ − магнитное квантовое число, 𝜇Б −магнетон 

Бора 

𝜇Б =
𝑒ℏ

2𝑚0𝑐
 . 

1.36.  Сферические функции 

 𝑌ℓ,𝑚(θ, φ) = √
(2ℓ + 1)

4𝜋

(ℓ − 𝑚)!

(ℓ + 𝑚)!
 𝑃ℓ

𝑚(𝑐𝑜𝑠θ)𝑒𝑖𝑚𝜑,  

где  

𝑃ℓ
𝑚(𝑐𝑜𝑠θ) = 𝑃ℓ

𝑚(𝑥) =
1

2ℓℓ!
(1 − 𝑥2)

|𝑚|
2

𝑑ℓ+|𝑚|

𝑑𝑥ℓ+|𝑚|
(𝑥2 − 1)ℓ 

– присоединённые полиномы Лежандра. 

1.37.  Метод вычисления сферических функций, основан-

ный на последовательном понижении магнитного квантового 

числа при данном ℓ: 

𝑌ℓ,ℓ(θ, φ) = 𝐶ℓ,ℓ𝑠𝑖𝑛
ℓθ 𝑒𝑖ℓ𝜑, 𝑚 = ℓ; 
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𝑌ℓ,ℓ−1(θ,φ) = 𝐶ℓ,ℓ−1𝑐𝑜𝑠θ 𝑠𝑖𝑛
ℓ−1θ 𝑒𝑖(ℓ−1)𝜑,   𝑚 = ℓ − 1; 

𝑌ℓ,ℓ−2(θ, φ) = 𝐶ℓ,ℓ−2𝑠𝑖𝑛
ℓ−2θ [1 − (2ℓ − 1)𝑐𝑜𝑠2θ]𝑒𝑖(ℓ−2)𝜑, 

𝑚 = ℓ − 2.  

1.38.  Радиальная волновая функция электрона в водородо-

подобном атоме 

𝑅𝑛ℓ(𝑟) = 𝐶𝑛ℓ   𝑟
ℓ 𝐿𝑛−ℓ−1

2ℓ+1 (𝑟) 𝑒− 
𝑍
𝑛𝑎 𝑟 , 

где 𝐿𝑛−ℓ−1
2ℓ+1 (𝑟) − полиномы Лагерра, 𝑛 = 𝑛𝑟 + ℓ + 1 −главное 

квантовое число, 𝑛𝑟 – радиальное квантовое число,  

𝐶𝑛ℓ   = (
𝑍

𝑛𝑎
)

3
2⁄

√
4

𝑛(𝑛 − ℓ − 1)! (𝑛 + ℓ)!
 

− нормировочный множитель. 

1.39.  Энергетический спектр водородоподобного атома  

в теории Шрёдингера 

   𝐸𝑛 = −
𝑚0𝑍

2𝑒4

2𝑛2ℏ2
 .                  

1.40.  Поправка первого порядка к невозмущенному 

уровню энергии 

𝐸𝑛
(1)

= ⟨Ψ𝑛
0|𝑊 ̂|Ψ𝑛

0⟩, 

где 𝑊 ̂– оператор возмущения. 

1.41.  Поправка второго порядка малости к невозмущен-

ному уровню энергии 

𝐸𝑛
(2)

= ∑
|⟨𝑛0|𝑊 ̂|𝑘0⟩|

2

𝐸𝑛
0 − 𝐸𝑘

0 .

𝑘(≠𝑛)
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1.42. Волновые функции в первом порядке теории возму-

щений 

Ψ𝑛 = Ψ𝑛
0 + ∑

⟨Ψ𝑘
0|𝑊 ̂|Ψ𝑛

0⟩

𝐸𝑛
0 − 𝐸𝑘

0 

𝑘(≠𝑛)

Ψ𝑘 .
0  

1.43. Уровни энергии возмущённой системы при наличии 

двукратного вырождения 

𝐸 = 𝐸0 +
𝑊11 + 𝑊22

2
 ± √(

𝑊11 − 𝑊22

2
)
2

+ |𝑊12|
2. 

1.44. Вероятность электрических дипольных переходов в 

единицу времени в первом приближении теории возмущений  

∫𝒫nm
(I)dω =

4π2

3ℏ2
|exmn|

2ρ̅|ω=ωmn
,                             

где ρ̅|ω=ωmn−средняя плотность энергии излучения на резонанс-

ной частоте 𝜔 = 𝜔𝑚𝑛. 

1.45. Коэффициенты Эйнштейна для спонтанных Amn и 

вынужденных 𝐵𝑚𝑛 квантовых переходов 

Amn =
4ωmn

3

3ћc3
|exmn|

2, 

𝐵𝑚𝑛 =
4π2

3ℏ2
 |exmn|

2. 

1.46. Правила отбора для орбитального и магнитного кван-

товых чисел при электрических дипольных переходах: 

ℓ′ = ℓ ± 1, или ∆ℓ = ±1, 

m′ = m;m ± 1, или ∆m = 0,±1. 

1.47. Выражения для операторов спина через спиновые 

матрицы Паули: 

𝑆̂𝑥 =
ℏ

2
𝜎̂𝑥 ,     𝑆̂𝑦 =

ℏ

2
𝜎̂𝑦 , 𝑆̂𝑧 =

ℏ

2
𝜎̂𝑧 , 
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где  

𝜎̂𝑥 = (
0 1
1 0

),      𝜎̂𝑦 = (
0 −𝑖
𝑖 0

),   𝜎̂𝑧 = (
1 0
0 −1

). 

1.48. Квантование полного момента импульса и его проек-

ции 

ℐ2 = ℏ2𝑗(𝑗 + 1), 

ℐ𝑧 = 𝑚𝑗ℏ, 

где 𝑗 = 1 2⁄ , 3 2, 5 2⁄⁄ , . . − внутреннее квантовое число, 𝑚𝑗 = 

= ± 1 2⁄ ,±3 2, ±5 2⁄⁄ , . . ±𝑗 −магнитное квантовое число пол-

ного момента импульса.    

1.49. Множитель Ланде (фактор спектроскопического рас-

щепления) 

𝑔j = 1 +
𝑗(𝑗 + 1) + ℓ𝑠(ℓ𝑠 + 1) − ℓ(ℓ + 1)

2𝑗(𝑗 + 1)
 . 

1.50. Формула расщепления уровней энергии в слабом маг-

нитном поле в аномальном эффекте Зеемана  

∆𝜔

𝜔𝐿
= mj𝑔j − mj

′gj
′, 

где ларморовская частота 

ωL =
eℋ

2𝑚0c
 , 

ℋ − напряжённость внешнего магнитного поля. 

1.51. Уровни энергии в атоме гелия: 

𝐸1 = 𝐸0 + 𝐾 − 𝐴, 

𝐸2 = 𝐸0 + 𝐾 + 𝐴, 
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где кулоновский 𝐾 и обменный интеграл 𝐴 имеют вид 

𝐾 = ∫ ∫ Ψ𝑎
∗(1)Ψ𝑏

∗(2)
𝑒2

𝑟1,2
Ψ𝑎(1)Ψ𝑏(2)𝑑𝑉1𝑑𝑉2

𝑉2𝑉1

, 

𝐴 = ∫ ∫ Ψ𝑎
∗(1)Ψ𝑏

∗(2)
𝑒2

𝑟1,2
Ψ𝑎(2)Ψ𝑏(1)𝑑𝑉1𝑑𝑉2.

𝑉2𝑉1

 

1.52. Синглетные и триплетные состояния двухэлектрон-

ной системы 

Ψ𝑆 =
1

√2
[(1) ↑ (2) ↓ −(1) ↓ (2) ↑], 𝑆 = 0 𝑆𝑧 = 0; 

Ψ𝑇 =
1

√2
{

(1) ↑ (2) ↑ 𝑆𝑧 = 1
(1) ↑ (2) ↓ +(1) ↓ (2) ↑ 𝑆𝑧 = 0

(1) ↓ (2) ↓ 𝑆𝑧 = −1

} (𝑆 = 1). 

1.53. Уровни энергии в молекуле водорода 

U1 = 2E0 +
e2

R
+

K − A

1 − 𝓈2
, 

U1 = 2E0 +
e2

R
+

K + A

1 + 𝓈2
, 

где  

𝓈 = ∫Ψ𝑎(1)Ψb(1)  𝑑V1 = ∫Ψ𝑎(2)Ψb(2)𝑑V2  

− интеграл неортогональности (перекрытия волновых функ-

ций), R − межъядерное расстояние. 

1.54. Связь спина с валентностью 

𝓋 = 2𝑠. 

1.55. Формула Резерфорда для дифференциального эф-

фективного сечения рассеяния 
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dσ = (
Ze2

m𝓋2
)

2
dΩ

sin4 θ
2

 . 

Раздел 2 Статистическая физика и термодинамика 

2.1. Фазовая плотность вероятности (функция статистиче-

ского распределения) 

             𝜌 =
𝑑𝑊

𝑑𝑞 𝑑𝑝
 ,                            

где 𝑑𝑊 − вероятность того, что координаты фазового простран-

ства находятся в некотором элементе объёма 𝑑Г = (𝑑𝑞 ∙ 𝑑𝑝). 

2.2. Среднее значение термодинамической величины 

𝐿̅ = 〈𝐿〉 = ∫𝐿 𝑑𝑊 = ∫𝐿 𝜌 𝑑Г. 

2.3. Функция распределения молекул идеального газа по 

модулям скоростей (распределение Максвелла) 

𝑓(𝑣) =
4

√𝜋
(

𝑚

2𝑘𝑇
)
3

2⁄

𝑣2 𝑒− 
𝑚𝑣2

2𝑘𝑇   . 

2.4. Характерные скорости максвелловского распределе-

ния (наиболее вероятная, средняя, среднеквадратичная): 

𝑣в = √
2𝑘𝑇 

𝑚
= √

2𝑅𝑇 

𝜇
 , 

𝑣̅ = √
8𝑘𝑇   

𝜋𝑚
= √

8𝑅𝑇   

𝜋𝜇
, 
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√𝑣2̅̅ ̅ = √
3𝑘𝑇 

𝑚
= √

3𝑅𝑇 

𝜇
; 

𝑣в ∶ 𝑣̅ ∶ √𝑣2̅̅ ̅ = 1 ∶ 1,13 ∶ 1,22.     

2.5. Распределение Больцмана во внешнем силовом поле 

𝑑𝑊(𝑟 ) = 𝐴 𝑒− 
𝑈(𝑟 )
𝑘𝑇 𝑑𝑉, 

где 𝑑𝑊(𝑟 ) −вероятность того, что радиус-вектор 𝑟 (𝑥, 𝑦, 𝑧) мо-

лекулы идеального газа, находящегося во внешнем силовом 

пиле в состоянии равновесия при температуре T, попадает в ин-

тервал 𝑟 ÷ 𝑟 + 𝑑𝑟 , 𝑈(𝑟 ) −потенциальная энергия частицы, 

𝑑𝑉 −элемент объёма, 𝐴 −нормировочная константа. 

2.6.  Барометрическая формула 

𝑝 = 𝑝0 𝑒
− 

𝑚𝑔𝑧
𝑘𝑇 .   

2.7.  Микроканоническое распределение Гиббса: 

 а) классическое 

𝜌 = {

1

∆Г(𝐸0)
, если 𝐸0 ≤ 𝐸 ≤ 𝐸0 + ∆𝐸;

0, если 𝐸 вне этого интервала,

 

где ∆Г(𝐸0) – элемент фазового объёма;  

 б) квантовое 

𝑊(𝐸𝑛) = {

1

∆Г(𝐸)
, если 𝐸 ≤ 𝐸𝑛 ≤ 𝐸 + ∆𝐸;

0, если 𝐸𝑛 находится вне этого слоя,
  

где ∆Г(𝐸) − статистический вес. 

2.8.  Каноническое распределение Гиббса: 

 а) в классической статистике 

𝜌 = 𝐴𝑒− 
𝐸
𝑘𝑇 , 
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где нормировочный множитель 𝐴 = 1 𝑧,   𝑧 − ⁄ статистический 

интеграл; 

 б) в квантовой статистике 

𝑊𝑛 =
𝑒− 

𝐸𝑛
𝑘𝑇

𝑧
 , 

где 𝑧 −статистическая сумма. В общем случае 

𝑊𝑛 =
𝑔𝑛𝑒

−
𝐸𝑛
𝑘𝑇

𝑧
  , 

где 𝑔𝑛 −кратность вырождения уровня энергии 𝐸𝑛. 

2.9.  Статистический интеграл (интеграл состояний) 

𝑧 = ∫ 𝑒− 
𝐸
𝑘𝑇𝑑Г

Г

. 

2.10.  Статистическая сумма (сумма состояний) 

𝑧 = ∑𝑒−
𝐸𝑛
𝑘𝑇  

𝑛

.  

В общем случае 

𝑧 = ∑𝑔𝑛𝑒
−

𝐸𝑛
𝑘𝑇  .

𝑛

 

2.11.  Большое каноническое распределение 

а) классическое 

𝜌 = 𝐴𝑒
𝜇𝑁−𝐸

𝑘𝑇 , 

где 𝐴 = 1 𝑍,   𝑍 − ⁄ статистический интеграл 

𝑍 = ∑ ∫ 𝑒
𝜇𝑁−𝐸

𝑘𝑇 𝑑Г,

Г

∞

𝑁=0

 

𝜇 −химический потенциал; 

б) квантовое  
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𝑊𝑛 =
𝑒

𝜇𝑁𝑛−𝐸𝑛
𝑘𝑇

𝑍
 ,  

где 𝑍 − большая статистическая сумма 

𝑍 = ∑∑𝑒
𝜇𝑁𝑛−𝐸𝑛

𝑘𝑇  

𝑛

.

𝑁𝑛

 

2.12.  Связь свободной энергии с интегралом состояний 

𝐹 = −𝑘𝑇ℓ𝑛𝑧. 

2.13.  Выражение для большого термодинамического по-

тенциала через большую статсумму 

Ω = −𝑘𝑇ℓ𝑛𝑍. 

2.14.  Связь внутренней энергии идеального газа со стати-

стическим интегралом 

𝑈 = 𝐸̅ = 𝑘𝑇2 (
𝜕ℓ𝑛𝑧

𝜕𝑇
)
𝑉
. 

2.15.  Выражение для давления через статистический инте-

грал 

𝑝 =
𝑘𝑇

𝑧
(
𝜕𝑧

𝜕𝑉
)

𝑇
. 

2.16.  Связь энтропии со статистическим интегралом 

𝑆 = 𝑘 (ℓ𝑛𝑧 + 𝑇
𝜕ℓ𝑛𝑧

𝜕𝑇
). 

2.17.  Принцип Больцмана 

𝑆 = 𝑘 ℓn𝑊, 

где  𝑆 − энтропия макросостояния системы, 𝑊 − термодинами-

ческая вероятность. 

2.18.  Энтропия как функция статистического распределе-

ния (распределения вероятностей отдельных микросостояний 

системы) 
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𝑆 = −𝑘 ∑𝑊𝑛 ∙

𝑛

ℓn𝑊𝑛.   

2.19.  Интеграл состояний одноатомного идеального газа 

из N частиц 

𝑧ид  =
1

𝑁! ℎ3𝑁
(2𝜋𝑚𝑘𝑇)

3𝑁
2 𝑉𝑁 . 

2.20.  Функции распределения квантовых статистик: 

а) функция распределения Ферми – Дирака 

𝑓 =
1

𝑒
𝐸−𝜇
𝑘𝑇  + 1

 ;   

б) функция распределения Бозе – Эйнштейна 

𝑓 =
1

𝑒
𝐸−𝜇
𝑘𝑇  − 1

 ;   

в) функция распределения Джентиле (промежуточной кванто-

вой статистики) 

𝑓 =
1

𝑒
𝐸−𝜇
𝑘𝑇  − 1

−
(𝑁 + 1)

𝑒
(𝑁+1)(𝐸−𝜇)

𝑘𝑇  − 1

 , 

где 𝑁 −максимальное число частиц в данном квантовом состо-

янии. 

2.21.  Температура вырождения  

𝑇0 =
ℎ2

2𝜋𝑚𝑘
 𝑛

2
3⁄ , 

где 𝑛 − концентрация частиц в газе, 𝑚 − масса частицы. 

2.22.  Теорема о равномерном распределении энергии по 

степеням свободы 

Е̅кин =
𝑘𝑇

2
 . 
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2.23.  Химический потенциал 

 𝜇 = (
𝜕𝒫

𝜕𝑁
)
𝑦,𝜃

 𝜇 = −Т
𝜕𝑆

𝜕𝑁
 , 

где 𝒫 − термодинамический потенциал (внутренняя энергия, 

свободная энергия, энтальпия, энергия Гиббса, большой термо-

динамический потенциал),  𝑦 – набор механических параметров 

(p,V), 𝜃 – набор термических переменных (T,S), N – число частиц 

в системе.  

2.24.  Термодинамические потенциалы 

Таблица Д.1 –  Характеристические функции 

Термодинамиче-

ский 

потенциал 

Формула 
Полный  

дифференциал 

1.Внутренняя 

энергия 

U (V, S) 𝑑𝑈 = 𝑇𝑑𝑆 − 𝑝𝑑𝑉     

2.Свободная 

энергия  

(или энергия 

Гельмгольца) 

F (V, T) = U − TS 𝑑𝐹 = −𝑝𝑑𝑉 − 𝑆𝑑𝑇  

3.Энтальпия (теп-

лосодержание) 

H (p, S) = U + pV 𝑑𝐻 = 𝑇𝑑𝑆 + 𝑉𝑑𝑝     

4.Энергия Гиббса  G (p, T)= U + pV − TS 

G = H − TS 

G = F + pV 

𝑑𝐺 = 𝑉𝑑𝑝 − 𝑆𝑑𝑇     

5.Большой термо-

динамический 

потенциал 

Ω(V, T, 𝑁) = U − TS − 𝜇𝑁 

Ω = −pV 

𝑑Ω = −𝑝𝑑𝑉 − 𝑆𝑑𝑇 − 𝜇𝑑𝑁 
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2.25. Нулевое начало термодинамики 

∮𝑑𝑇 = 0. 

 

2.26. Термодинамическое определение абсолютной темпе-

ратуры  

1

𝑇
=

𝜕𝑆

𝜕Е
 , 

где  𝑆 −энтропия. 

2.27. Связь абсолютной температуры с населённостью 

энергетических уровней двухуровневой системы 

𝑇1,2 =
∆𝐸

𝑘ℓ𝑛
𝑁1
𝑁2

 ,                                                     

где 𝑁1 и 𝑁2 – населённости уровней (число частиц на каждом 

уровне), ∆𝐸 – расстояние между уровнями. 

2.28.  Первое начало термодинамики для элементарного 

процесса перехода системы из одного состояния в бесконечно 

близкое 

𝛿𝑄 = 𝑑𝑈 + 𝛿𝐴, 

где 𝛿𝑄 − количество теплоты, 𝑑𝑈 −изменение внутренней энер-

гии, 𝛿𝐴 − элементарная работа. 

2.29.  Теплоёмкость 

𝐶 =
𝛿𝑄

𝑑𝑇
 , 

где 𝛿𝑄 −количество теплоты, необходимое для изменения тем-

пературы системы на 𝑑𝑇.  

2.30.  Уравнение Майера 

𝐶𝑝 = 𝐶𝑉 + 𝑅, 
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связывающее теплоёмкости при постоянном объёме 𝐶𝑉 и посто-

янном давлении 𝐶𝑝. 

 

2.31. Уравнение состояния идеального газа (уравнение 

Клапейрона – Менделеева) 

𝑝𝑉 = 𝜈𝑅𝑇, 

где 𝜈 = 𝑚/𝜇 – число молей газа массой 𝑚, 𝜇 – молярная масса, 

R =8.31 Дж/моль∙К (универсальная газовая постоянная). 

2.32.  Уравнения основных термодинамических процессов: 

а) изотермический (T= const), закон Бойля-Мариотта 

𝑝𝑉 = 𝑐𝑜𝑛𝑠𝑡,
𝑝1

𝑝2
=

𝑉2

𝑉1
 ; 

б) изобарный (p=const), закон Гей-Люссака  

𝑉1

𝑉2
=

Т1

Т2
, 𝑉𝑡 = 𝑉0(1 + 𝛼𝑡), 

где 𝛼 – коэффициент теплового расширения газа; 

в) изохорный (V=const), закон Шарля 

Р1

Р2
=

Т1

Т2
,         𝑝𝑡 = 𝑝0(1 + 𝛽𝑡), 

где 𝛽 – термический коэффициент давления; 

г) адиабатный (𝑆 = 𝑐𝑜𝑛𝑠𝑡), уравнение Пуассона 

𝑃𝑉𝛾 =   const, 

где 𝛾 =
СР

С𝑉
 – показатель адиабаты; 

д) политропный (С=const) 

𝑝𝑉𝑛 =   const, 

где  𝑛 =
𝐶−𝐶𝑝

𝐶−𝐶𝑉
 – показатель политропы. 
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2.33.  Второе начало термодинамики для равновесных про-

цессов: 

а) в дифференциальной форме 

𝛿𝑄

𝑇
= 𝑑𝑆  или 𝛿𝑄 = 𝑇𝑑𝑆; 

б) интегральное уравнение для равновесных круговых процес-

сов (равенство Клаузиуса) 

∮
𝛿𝑄

𝑇
= 0. 

2.34.  Основное термодинамическое тождество для обрати-

мых процессов 

𝑇𝑑𝑆 = 𝑑𝑈 + 𝛿𝐴. 

2.35. Третье начало термодинамики 

lim
𝑇→0𝐾

[𝑆(𝑇, 𝑥2) − 𝑆(𝑇, 𝑥1)] = 0, 

или 

lim
𝑇→0𝐾

(
𝜕𝑆

𝜕𝑥
)

𝑇
= 0, 

где 𝑥 −любой термодинамический параметр. 

2.36.  Уравнение Гиббса – Гельмгольца 

а) для свободной энергии 

𝐹 = 𝑈 + 𝑇 (
𝜕𝐹

𝜕𝑇
)
𝑉
; 

б) для энергии Гиббса 

𝐺 = 𝐻 + 𝑇 (
𝜕𝐺

𝜕𝑇
)
𝑝
 . 

2.37.  Связь между термическим и калорическим уравнени-

ями состояния 

𝑇 (
𝜕𝑝

𝜕𝑇
)
𝑉

= (
𝜕𝑈

𝜕𝑉
)

𝑇
+ 𝑝.                                                      
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2.38.  К.п.д. тепловой машины 

𝜂 =
𝐴

𝑄1
=

𝑄1 − 𝑄2

𝑄1
 .                                                         

2.39.  К.п.д. цикла Карно 

𝜂 =
𝑇1 − 𝑇2

𝑇1
= 1 −

𝑇2

𝑇1
 . 

2.40.  Уравнение Ван-дер-Ваальса 

(𝑝 +
𝜈2𝑎

𝑉2 
) (𝑉 − 𝜈𝑏) = 𝜈𝑅𝑇, 

где  𝜈 −число молей. 

2.41.  Параметры критической изотермы: 

𝑉𝑘 = 3𝑏,        𝑝𝑘 =
𝑎

27𝑏2
 , 𝑇𝑘 =

8𝑎

27𝑅𝑏
  . 

2.42.  Температура инверсии газа 

𝑇𝑖 =
2𝑎

𝑅𝑏 
. 

2.43.  Уравнение Клапейрона – Клаузиуса для фазовых пе-

реходов I рода 

𝑑𝑝

𝑑𝑇
=

𝜆

𝑇(𝑣𝐵 − 𝑣𝐴)
 , 

где 𝜆 –  теплота фазового перехода на моль или грамм вещества;                      

(𝑣𝐵 − 𝑣𝐴) −изменение удельного объёма. 

2.44.  Уравнения Эренфеста в теории фазовых переходов II 

рода: 

Δ𝐶𝑝 = 𝑇∆(
𝜕𝑣

𝜕𝑇
)
𝑝

𝑑𝑝

𝑑𝑇
 , 

Δ𝐶𝑣 = −𝑇∆ (
𝜕𝑝

𝜕𝑇
)
𝑣

𝑑𝑣

𝑑𝑇
 . 
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2.45.  Правило фаз Гиббса 

𝑛 ≤ 𝑟 + 2 ,   

согласно которому в системе из 𝑟 компонентов одновременно 

может находиться в равновесии не больше чем (𝑟 + 2) фазы. 

 

2.46.  Формула Эйнштейна – Смолуховского для средне-

квадратичного смещения броуновской частицы 

Δ𝑥 = √𝑥2̅̅ ̅ = √
𝑘𝑇

3𝜋𝜂𝑎
 √𝑡  , 

где 𝑎 −размер частицы, 𝜂 −  вязкость среды.   

2.47.  Формула Рэлея для интенсивности рассеяния света 

𝐼 = 𝐼0
𝜋2

2𝜆4

(𝜀 − 1)2

𝑁
(1 + 𝑐𝑜𝑠2𝜃), 

где 𝑁 – число частиц в рассеивающем объёме. 

2.48.  Формула Найквиста для флуктуационной ЭДС (ча-

стотное распределение шума, обусловленного случайными теп-

ловыми ЭДС) 

ℰ2(𝜈) = 4𝑘𝑇𝑅(𝜈). 

2.49.  Кинетическое уравнение Больцмана 

(
𝑑𝑓

𝑑𝑡
)
перен.

= (
𝑑𝑓

𝑑𝑡
)
столкн.

. 

В приближении времени релаксации  

(
𝑑𝑓

𝑑𝑡
)
столкн.

= −
𝑓 − 𝑓0

𝜏
 , 

где 𝑓0 −равновесная функция распределения, τ – время релакса-

ции. 

2.50.  𝐻-теорема Больцмана 

𝑑𝐻

𝑑𝑡
≥ 0.  
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Приложение Е 
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