
ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО ОБЩЕЙ И НЕОРГАНИЧЕСКОЙ ХИМИИ

РАБОЧАЯ ТЕТРАДЬ

ЧАСТЬ II

студента_			
группы			

Челябинск 2017

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Южно-Уральский государственный гуманитарно-педагогический университет»

ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО ОБЩЕЙ И НЕОРГАНИЧЕСКОЙ ХИМИИ

РАБОЧАЯ ТЕТРАДЬ

ЧАСТЬ II

Челябинск 2017 УДК 546 (076)

ББК 24.1я7

Л 12

Лабораторный практикум по общей и неорганической химии [Текст]:

рабочая тетрадь: в 2 ч. Ч. 2 / сост. И.Г. Карпенко. – Челябинск: Изд-во Юж.-Урал. гос.

гуман.-пед. ун-та, 2017. – Ч. 2. – 220 с.

ISBN 978-5-906908-49-0

Практикум содержит описания лабораторных работ по неорганической химии.

Каждое задание сопровождается вопросами, которые требуют обобщения и

конкретизации знаний по дисциплине, и приложением общих понятий к частным

процессам и явлениям. Пособие содержит вопросы и задания для внеаудиторной

работы студентов по дисциплине «Общая и неорганическая химия».

Издание предназначено для самостоятельной аудиторной и внеаудиторной

работы студентов педагогических вузов, обучающихся по профилям «Химия.

Биология», «Биология. Химия».

Материал рабочей тетради может быть использован в период прохождения

педагогической практики. Практикум поможет школьным учителям химии при

проведении уроков, факультативных занятий, полезен педагогам, работающим в

классах с углубленным изучением химии.

Рецензенты: Е.Г. Антошкина, канд. техн. наук, доцент

А.А. Сутягин, канд. хим. наук, доцент

ISBN 978-5-906908-49-0

© И.Г. Карпенко, составление, 2017

© Издательство Южно-Уральского государст-

венного гуманитарно-педагогического VHИ-

верситета, 2017

2

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Вторая часть практикума является логическим продолжением первой части и служит для сопровождения учебного процесса по дисциплине «Общая и неорганическая химия» и учебной практике «Практика по получению первичных умений и навыков (по химии)».

Рабочая тетрадь включает по каждой теме дисциплины «Общая и неорганическая химия»:

- описания лабораторных работ, выполняемых при изучении химии элементов и их важнейших соединений;
 - вопросы для теоретической подготовки к лабораторным занятиям;
 - задания для внеаудиторной работы студентов.

Использование студентами практикума при подготовке к лабораторным занятиям будет способствовать успешному формированию их знаний и умений и поможет повысить познавательную самостоятельность.

Данное пособие поможет организовать самостоятельную работу студента в ходе аудиторной и внеаудиторной работы.

Самостоятельная работа студентов на кафедре химии и методики обучения химии при изучении курса общей и неорганической химии направлена на развитие умения самостоятельно интерпретировать полученные в эксперименте данные, дать теоретическое обоснование эксперимента установить причинно-следственные методике И ИХ взаимоотношения. При этом выявляются закономерности изменения свойств неорганических веществ в зависимости от положения элементов в группах периодической системы Д.И. Менделеева. Формирование навыков анализа и обобщения результатов в процессе учебно-исследовательской работы студентов осуществляется при подготовке отчета по работе, а также при подготовке к занятию по приведенным вопросам и выполнении заданий для внеаудиторной работы, предусмотренных по каждой теме.

Рабочая тетрадь поможет успешно провести и оформить лабораторную работу по химии, больше времени уделить химическому эксперименту, приобрести исследовательские, практические умения и навыки и при этом затратить минимум времени для написания отчета по проделанной работе.

Выполнение лабораторных работ по неорганической химии будет успешным, если студент обладает прочными знаниями теоретического материала и методики эксперимента. Поэтому к каждому лабораторному занятию нужно готовиться, предварительно прорабатывая теоретический материал по теме.

Опыт лабораторных занятий, приобретенный в ходе практикума, дает возможность успешно выполнять задания последующих дисциплин химического блока.

В связи с большим разнообразием опыты проводятся по вариантам. Списки опытов, соответствующих номеру варианта, приведены в конце пособия.

ПРАВИЛА РАБОТЫ В ЛАБОРАТОРИИ

Техника безопасности при работе с реактивами в химической лаборатории

Студент допускается на занятие в лабораторном халате и чистой обуви; он должен занимать постоянное место работы, соблюдать чистоту, тишину и порядок; бережно относиться к оборудованию, посуде и реактивам.

При работе с реактивами .переставлять или выносить вещества из учебной аудитории, пробовать их на вкус; растворы кислот, оснований и ядовитых веществ недопустимо засасывать ртом, их следует набирать специально оборудованными пипетками; работу с вредными ядовитыми газами, огнеопасными и взрывчатыми веществами, выпаривание и прокаливание летучих соединений проводить только в вытяжном шкафу; сухой реагент брать только сухим и чистым шпателем или ложечкой; отработанные растворы соединений серебра, ртути, сильнодействующих веществ, органические растворители сливать в отдельные сосуды; нюхать выделяющиеся газы следует издали, слегка направляя поток воздуха от сосуда на себя; во избежание попадания брызг не наклоняться над сосудом с кипящей жидкостью, при нагревании жидкости в пробирке держать ее отверстие от себя и работающих рядом.

Все опыты с применением концентрированных кислот и щелочей, а также работы с вредными веществами проводить только в вытяжном шкафу при включенной вентиляции.

Запрещается: работать с незаземленными приборами; перемещать и оставлять включенный прибор (водяные бани, спиртовки) без присмотра; принимать пищу в химической лаборатории; проводить опыты, не предусмотренные планом работы.

При воспламенении летучих жидкостей засыпать их песком, затем песок удалить, поверхность промыть.

В случае ожога (нагретым предметом или пламенем) обожженное место обработать крепким раствором перманганата калия, смазать синтомициновой эмульсией (из аптечки).

При попадании на кожу брызг кислоты или щелочи, необходимо тотчас смыть их большим количеством воды. Затем пораженный участок кожи обработать раствором питьевой соды (в случае попадания кислоты) или раствором борной кислоты (в случае попадания щелочи).

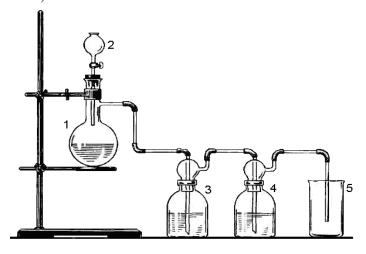
Обязанности дежурных

- 1. Получить у лаборантов учебные пособия, реактивы, приборы и другое оборудование, необходимые для занятия.
- 2. Следить за чистотой и порядком в лаборатории, наличием дистиллированной воды и реактивов.
- 3. По окончании работы принять от студентов учебные пособия, приборы, проверить чистоту рабочих мест и посуды, выключить электроприборы, закрыть водопроводные краны, сдать аудиторию лаборанту.

ЛАБОРАТОРНЫЙ ПРАКТИКУМ

ГАЛОГЕНЫ И ИХ СОЕДИНЕНИЯ

Все работы с хлором и хлороводородом проводить в вытяжном шкафу!


Изменения, происходящие с исходной смесью:

Хлор и хлороводород

1. ПОЛУЧЕНИЕ ХЛОРА

а) Наблюдать получение хлора в реакциях с использованием следующих окислителей	í:
1. оксид марганца (IV);	
2. дихромат калия.	
В пробирку насыпать немного реактива-окислителя и добавить примерно 1 м	ИЛ
концентрированной HCl ($\rho = 1,19 \text{ г/см}^3$).	
Содержимое пробирки слегка подогреть.	

В промывную склянку 3 наливают воду (для очистки хлора от примеси хлороводорода), в промывную склянку 4 наливают концентрированную серную кислоту (для осушения газа).

B колбу насыпать $KMnO_4$, в капельную воронку налить концентрированную HC1.

Добавлять по каплям концентрированную HCl в колбу Вюрца, слегка приоткрывая кран воронки.

Выделяющимся газом наполнить банку и закрыть ее стеклянной пластинкой.

Изменения, происходящие с исходной смесью:

Определить выделяющийся газ по цвету (на фоне белой бумаги) и запаху (соблюдать осторожность!)
Написать уравнение реакции получения хлора, расставить коэффициенты электронно-ионным методом. Указать окислитель и восстановитель.
Оставить сосуд для следующих опытов. По окончании работы с прибором газоотводную трубку опустить в стакан с концентрированным раствором щелочи.
2. ВЗАИМОДЕЙСТВИЕ ХЛОРА С МЕТАЛЛАМИ
а) Накалить в пламени горелки пучок тонких медных проволочек и тотчас опустить их в сосуд с хлором.
Что происходит? Написать уравнение реакции горения меди в хлоре.
Растворить продукт горения в небольшом объеме воды. Цвет раствора

С помощью какой реакции можно доказать наличие хлорид-анионов в полученном растворе?
б) В железной ложечке сильно нагреть немного порошка железа и понемногу высыпать в сосуд с хлором, на дно которого насыпан небольшой слой песка. Наблюдать взаимодействие железа с хлором.
После остывания сосуда налить в него немного воды и взболтать. Цвет образовавшегося раствора
Напишите, с помощью каких реакций можно определить, какую степень окисления приобретает железо при горении в хлоре.
После оседания песка проделать одну из этих реакций. Наблюдения:
Написать уравнение реакции горения железа в хлоре.
в) Отрезать небольшой кусочек металлического натрия (величиной с горошину), отжать его фильтровальной бумагой для удаления следов керосина. Расплавить в железной ложечке и внести в сосуд с хлором, на дне которого насыпан небольшой слой песка. Что происходит?
С помощью какой реакции можно доказать наличие хлорид-анионов в полученном растворе?
Какую роль играет хлор в реакциях с металлами?
3. ВЗАИМОДЕЙСТВИЕ ХЛОРА С НЕМЕТАЛЛАМИ Положить в ложечку для сжигания немного красного фосфора и внести в сосуд с хлором. Наблюдать происходящее явление.

После остывания сосуда налить в него немного воды и взболтать. Определить характер среды в полученном растворе. Индикатор —
Написать уравнение полного гидролиза продукта взаимодействия фосфора с хлором в молекулярной и ионной формах.
4. ВЗАИМОДЕЙСТВИЕ ХЛОРА С ОРГАНИЧЕСКИМИ ВЕЩЕСТВАМИ На дно сухой, предварительно подогретой пробирки поместить кусочек фильтровальной бумаги, смоченной скипидаром. Пропустить в пробирку хлор, опустив газоотводную трубку до дна пробирки. Какие изменения происходят с веществами?
Что представляют собой продукты реакции? Написать уравнение реакции, имея в виду, что скипидар в основном состоит из вещества состава $C_{10}H_{16}$.
5. ХЛОРНАЯ ВОДА И ЕЕ СВОЙСТВА
а) Налить в пробирку на $^2/_3$ холодной воды и насытить ее хлором (пропускать хлор в течение 2-4 мин). Отметить цвет (на фоне листа белой бумаги) и запах полученной хлорной воды (остарожим)
(осторожно!) Полученную хлорную воду сохранить для последующих опытов.
б) К небольшой порции полученной хлорной воды добавить нейтральный раствор лакмуса. Что наблюдаете? Цвет лакмуса, рН, среда в растворе
Написать уравнения обратимых процессов, происходящих при растворении хлора в воде:

Написать уравнение реакции.

К другой порции добавить несколько капель раствора нитрата серебра.

Наблюдения:	
С чем взаимодействуют ионы серебра?	
Написать уравнение реакции в молекулярной и ионной формах.	
в) В пробирку налить немного раствора красителя: 1. раствор индиго;	
2. раствор фуксина;	
3. вода, подкрашенная фиолетовыми чернилами. Добавить в пробирку несколько капель хлорной воды и взболтать. Что происходит?	
Какое вещество является окислителем, обесцвечивающим краситель, в данн реакции?	ой
Записать уравнение его образования. Уравнять методом электронного баланса.	
г) Налить в пробирку небольшой объем хлорной воды. Добавить несколько капель:	
1. раствора гидроксида натрия;	
2. сероводородной воды или подкисленного раствора Na ₂ S.	
Отметить происходящие изменения:	-
Написать уравнение реакции, расставить коэффициенты электронно-ионным методо	М.
К какому типу окислительно-восстановительных реакций она относится?	

до растворения первоначально выпавшего осадка. Цвет осадка –, цвет раствора –
Добавить хлорной воды. Отметить изменение окраски раствора.
Уравнения образования гидроксида хрома (III) и гексагидроксохромата (III) натрия:
Написать уравнения реакции, имея в виду, что ионы ${\rm Cr}^{3+}$ переходят в ионы ${\rm CrO_4}^{2-}$ вить коэффициенты электронно-ионным методом.
Кислородные соединения хлора
6. СВОЙСТВА ХЛОРНОЙ (БЕЛИЛЬНОЙ) ИЗВЕСТИ
а) Поместить в пробирку немного порошка хлорной (белильной) извести, развести
до получения взвеси, отметить его запах
Разделить полученную взвесь на 2 части.
К одной части добавить небольшой объем концентрированной HCl.
Какой газ выделяется? Написать уравнение реакции, расставить коэффициенты электронно-ионным методом.
Вторую часть хлорной извести взболтать с водой и добавить раствор фуксина. Что дается?
Объяснить результаты опыта.

10

соли кобальта (II), являющейся катализатором.

Нагреть пробирку. Наблюдения:
Доказать опытным путем, что продуктом каталитического разложения хлорной извести является кислород.
Написать уравнение реакции разложения хлорной извести. Уравнять методом электронного баланса.
в) К раствору ацетата свинца (II) добавить немного хлорной извести и нагреть. Отметить цвет образующихся осадка и газа: ↓ –
Написать уравнение реакции, учитывая, что ионы Pb ²⁺ переходят в PbO ₂ . Расставить коэффициенты электронно-ионным методом.
г) В 2 мл воды растворить несколько кристаллов $FeSO_4$ и добавить 2 мл раствора $NaOH$.
Отметить цвет и характер осадка: Написать уравнение реакции в молекулярной и сокращенной ионной формах.
Добавить к осадку 3-4 мл насыщенного раствора гипохлорита кальция. Наблюдаемые явления: Составить уравнение реакции. Уравнять методом электронного баланса.
Какую роль выполняет Ca(ClO) ₂ в окислительно-восстановительных реакциях?

7. СВОЙСТВА ХЛОРАТА КАЛИЯ

а) Внести в тигель 1 г КСІО3 и маленький кусочек КОН (брать только пинцетом). Тигель поставить на фарфоровый треугольник. Нагреть содержимое тигля до плавления. В расплавленную массу внести небольшое количество порошка MnO₂, продолжая нагревать до появления окраски манганата калия K₂MnO₄. Цвет расплава реакции. Составить уравнение окислительно-восстановительной Расставить коэффициенты электронно-ионным методом. Роль КСІО₃ в данной реакции – ______ б) Приготовить 0.3-0.5 г смеси $KClO_3$ и MnO_2 . (Перемешивать осторожно!) Нагреть смесь в сухой пробирке. Наблюдения: Определить опытным путем, какой газ выделяется. Составить уравнение реакции. Уравнять методом электронного баланса. Роль КСlO₃ в данной реакции – _____ в) Немного кристаллов КСІО₃ поместить в пробирку, добавить 2-3 мл концентрированной НСІ и слегка подогреть. Что происходит? Составить уравнение реакции. Уравнять методом электронного баланса. Роль КСlO₃ в данной реакции – _____ г) В сухую пробирку поместить несколько кристаллов КСІО3 и закрепить пробирку вертикально в лапке штатива. При помощи пипетки смочить кристаллы каплей концентрированной H₂SO₄.

Наблюдать выделение ClO₂ зеленовато-желтого цвета.

Написать уравнение реакции, исходя из того, что кроме ClO_2 образуется еще $KClO_4$ Уравнять методом электронного баланса.
Роль КСlO ₃ в данной реакции –
8. ОКИСЛИТЕЛЬНЫЕ СВОЙСТВА ХЛОРНОВАТОЙ КИСЛОТЫ В двух пробирках слить равные объемы растворов КСlO ₃ и KI. Наблюдаются ли изменения?
Затем в одну из пробирок добавить немного раствора H_2SO_4 . Что происходит Сравнить цвет растворов в обеих пробирках.
Объяснить результаты опыта, учитывая, что окислительные свойства в растворе характерны только для $HClO_3$, а не для ее солей.
Составить уравнение реакции. Расставить коэффициенты электронно-ионным методом.
Бром, иод и их соединения 9. ПОЛУЧЕНИЕ БРОМА И ИОДА (Работу проводить в вытяжном шкафу)
а) Смешать немного кристаллов КВr и порошка MnO_2 , всыпать в пробирку, добавити несколько капель концентрированной H_2SO_4 и слабо подогреть. Отметить цвет и запах <i>(осторожно!)</i> выделяющихся паров брома.
Составить уравнение реакции. Уравнять методом электронного баланса.

б) Проделать аналогичный опыт с КІ. Какое вещество выделяется в виде паров Каков их цвет и запах?
Составить уравнение реакции. Уравнять методом электронного баланса.
Какую роль выполняет MnO ₂ в проведенных реакциях?
в) К раствору КВг добавлять по каплям свежеприготовленную хлорную воду Наблюдения:
Наличием какого вещества обусловлена окраска раствора?
Цвет раствора: Цвет слоя бензола: Сделать вывод о растворимости брома в воде и в органическом растворителю Объяснить.
Написать уравнение реакции взаимодействия бромида калия с хлорной водой Уравнять методом электронного баланса.
г) К раствору КІ добавлять по каплям 1. хлорную воду; 2. бромную воду. Наблюдения:
Наличием какого вещества обусловлена окраска раствора?
Добавить к раствору 1 мл бензола (толуола). Энергично встряхнуть содержимо пробирки.
Цвет раствора: Цвет слоя бензола:

Сделать вывод о растворимости йода в воде и в органическом растворител Объяснить.
Написать уравнение реакции. Уравнять методом электронного баланса.
10. СВОЙСТВА БРОМА
(Работу проводить в вытяжном шкафу)
а) Налить в пробирку 2–3 мл бромной воды, отметить ее цвет
Слегка нагреть. Как изменяется окраска раствора? Объяснить.
б) В бледно окрашенный раствор индиго или фуксина добавить немного бромн воды.
Как изменяется окраска раствора?
Какое вещество является окислителем, обесцвечивающим краситель в данн реакции?
Записать уравнение его образования. Уравнять методом электронного баланса.
в) В пробирку с 5 мл бромной воды всыпать небольшими порциями при постояннов взбалтывании порошок магния. Наблюдения:
С каким ионом в растворе взаимодействует магний? Написать уравнение его образования.
Как добавление магния влияет на равновесие реакции между бромом и водо Объяснить.

г) К небольшой порции раствора сульфида натрия (отметить его цвет и запах) добавлять по каплям бромную воду и тщательно взбалтывать раствор. Записать наблюдения.
Составить уравнение реакции. Уравнять методом электронного баланса.
11. СВОЙСТВА ИОДА
а) Поместить в сухую пробирку кристаллик иода.
Дно пробирки слегка нагреть в пламени горелки.
Наблюдать за изменением цвета и агрегатного состояния иода.
Затем охладить на воздухе. Наблюдения:
б) Положить в пробирку несколько кристалликов иода, добавить к ним 5–10 мл воды и сильно взболтать.
Отметить цвет жидкости Хорошо ли растворяется иод в воде?
К водному раствору с нерастворившимися кристалликами иода добавить несколько капель раствора KI. Как изменяется окраска раствора?
Объяснить, записать уравнение взаимодействия иода с KI.
в) Испытать растворимость иода в этиловом спирте, для этого кристаллик иода опустить в 1–2 мл спирта, налитого в пробирку. Отметить цвет раствора.

Сравнить растворимость иода в воде и спирте. Объяснить.
г) К 2–3 мл сероводородной воды добавлять при взбалтывании несколько капель водного раствора иода. Наблюдения.
Составить уравнение реакции. Уравнять методом электронного баланса.
д) (Опыт проводить в вытяжном шкафу.) В фарфоровой чашке или на асбестовой сетке перемешать немного порошка алюминия (магния или цинковой пыли) с мелко растертым иодом. Смочить смесь несколькими каплями воды. Что происходит?
Почему возгоняется иод? Написать уравнение реакции, имея в виду, что вода играет роль катализатора. Уравнять методом электронного баланса.
12. ДЕЙСТВИЕ ХЛОРНОЙ ВОДЫ НА СМЕСЬ РАСТВОРОВ ИОДИДА КАЛИЯ И БРОМИДА КАЛИЯ
Влить в пробирку по 2–3 капли 2 Н растворов КІ и КВг, добавить около 0,5 мл бензола
(толуола) и прибавлять по каплям хлорную воду.
После каждой капли перемешивать содержимое пробирки, встряхивая ее.
Следить за цветом бензола. Наблюдения:
наолюдения. 1. Цвет бензола –, обусловлен наличием
2. Цвет бензола –, в растворе содержится
3. Цвет бензола –, обусловлен наличием
·

Сначала хлор окисляет KI, при этом выделяется свободный иод. Затем выделившийся иод окисляется хлором в йодноватую кислоту. При добавлении новых порций хлорной воды появляется окраска бензола, свидетельствующая о выделении свободного брома, которая при дальнейшем добавлении хлорной воды исчезает вследствие окисления брома в бромноватую кислоту.

Написать уравнения реакций. Указать окислитель и восстановитель в этих реакциях. Уравнять методом электронного баланса. 1. 2. 3. 4. 13. ВОДОРОДНЫЕ СОЕДИНЕНИЯ БРОМА И ИОДА (Работу проводить в вытяжном шкафу.) а) Поместить в сухую пробирку 0,5 г КВr и прилить немного 70%-го раствора H₂SO₄, осторожно подогреть. Что наблюдается? Чем загрязнен бромоводород, полученный этим способом? Написать уравнения реакций (основной и побочной). 1. б) В пробирку поместить немного КІ, добавить к нему концентрированной (60%-й) Н₃РО₄ и слабо подогреть. Что наблюдается? Какой выделяется газ? . Содержит ли иодоводород, полученный этим способом, примесь иода? Почему? Написать уравнение реакции.

	в) Собрать прибор по рисунку. В сухую колбу с капельной воронкой внести тщательно перемешанные 5 г мелко растертого иода и 0,5 г хорошо высушенного красного фосфора. В воронку налить немного воды. Добавлять по каплям воду к смеси иода с фосфором. Наблюдения: Образующийся иодоводород НІ собрать в сухой цилиндр или банку и закрыть сосуд стеклянной пластинкой. Цилиндр с НІ оставить
пробир	для следующего опыта. Затем насытить иодоводородом небольшой объем воды в ее. Трубку не опускать в воду, а держать близко над ее поверхностью. Почему?
цвет	болученный раствор испытать индикатором. Индикатор —
	аписать уравнение реакции образования HI, имея в виду, что она протекает в две образование иодида фосфора (III) и разложение его водой с образованием HI).
	В цилиндр с НІ внести сильно раскаленную стеклянную палочку. Наблюдать дящие изменения
	акова термическая устойчивость HI? аписать уравнение реакции.
F	14. ВОССТАНОВИТЕЛЬНЫЕ СВОЙСТВА ГАЛОГЕНОВОДОРОДОВ три сухие пробирки положить по 1 г измельченных КСl, КВr и KI и добавить в

В первый момент наблюдаются _____

Каков состав выделяющихся веществ? _____

каждую пробирку одинаковые объемы (по 2-3 мл) концентрированной H_2SO_4 .

Написать уравнения обменных реакций		
Следить за дальнейшими изменениями выделяется (<i>осторожно!</i>).		какой газ
Объяснить происходящие явления. Наг концентрированной серной кислотой. Рас методом.		
Сравнить восстановительные свойства в порядке возрастания их восстановительной ные потенциалы.		-
,		
15. РЕАКЦИИ НА Г Испытать в отдельных пробирках дейст иодида. Отметить цвет и характер осадков. AgCl —		бромида и
AgBr –		
Написать уравнения реакций в молекул	рной и сокращенной ионной форме.	

16. СОЛИ БРОМНОВАТИСТОЙ КИСЛОТЫ

(Работу проводить в вытяжном шкафу.)

К небольшому количеству бромной воды (цвет –) до) добавлять по	
каплям раствор щелочи до практически полного обесцвечивания раствора. Написать уравнение реакции взаимодействия брома с раствором молекулярной и ионной форме.	щелочи в	
Доказать опытным путем наличие в растворе гипобромита, использовав для водный раствор индиго или фуксина. Наблюдения:		
Записать уравнение его образования.		
17. ОКИСЛИТЕЛЬНЫЕ СВОЙСТВА БРОМНОВАТОЙ КИСЛОТЫ 2–3 мл концентрированного раствора бромата калия смешать с равны раствора H ₂ SO ₄ (3:1) и слегка подогреть. Есть ли изменения?	 олтать. xy.	
Добавить к раствору небольшой объем бензола, энергично встряхнуть. В окрашивается бензольное кольцо? Какое вещество бензол?		
Написать уравнения реакций образования бромноватой кислоты и ее взаимо иодом. Расставить коэффициенты электронно-ионным методом.	одействия с	

СЕРА И ЕЕ СОЕДИНЕНИЯ

Сера. Сероводород. Сульфиды

1. ВЗАИМОДЕЙСТВИЕ СЕРЫ С МЕТАЛЛАМИ

(Работу проводить в вытяжном шкафу.)

а) Взаимодействие серы с железом

смесь из 2 г с	пыта следует взять порошок восстановленного железа и серы. Приготовить еры и эквивалентного количества железа. нение:
Расчет	<u> </u>
Дано:	
$m(S) = 2 \Gamma$	
m(Fe) = ?	
Всыпа Нагрет Как только ст Наблю	тщательно перемешать стеклянной палочкой. ть полученную смесь в пробирку, укрепить ее вертикально в штативе. ть слегка всю смесь, а затем сильно греть в одном месте у дна пробирки. месь раскалится, горелку отставить. дать за протеканием реакции. Какое вещество образовалось в результате Отметить его цвет
Высыг После Предп СО(Fe	ке аккуратно разбить пробирку, удалить осколки стекла, растереть сплав. нать порошок в стаканчик с соляной кислотой (1:1), перемешать. оседания мути отметить цвет раствора и запах оложить степени окисления железа и серы в продукте. о разбить реакции, доказывающие данное предположение.
-	ать уравнения реакций. Указать признаки реакций.

б) Взаимодействие серы с алюминием

Приготовить смесь из 2 г серы и эквивалентного количества алюминия.

Уравн	ение:
Расчет:	
Дано:	
$m(S) = 2 \Gamma$	
m(Al) = ?	
	тщательно перемешать стеклянной палочкой. ать ее кучкой на металлический лист или асбестовый картон и поместить под
предваритель	гься смеси в одном месте кончиком длинной стеклянной палочки, нагретой но в пламени газовой горелки или спиртовки.
	роведении опыта не наклоняться над реакционной смесью! ить происходящие явления. Какие наблюдаются признаки химической реакции?
кислотой (1:1 После Продел	пке аккуратно растереть сплав. Высыпать порошок в стаканчик с соляной), перемешать. оседания мути отметить цвет раствора и запах пать реакции, доказывающие образование сульфида алюминия. ать уравнения реакций. Указать признаки реакций.
Испыт	2. СВОЙСТВА СЕРОВОДОРОДНОЙ ВОДЫ ать сероводородную воду индикатором ().
	, среда, pH
Написа	ать уравнение реакции диссоциации сероводородной кислоты.
I ступень:	ІІ ступень:
Испол	ьзуя справочные данные, сделать вывод о силе сероводородной кислоты.

3. ВОССТАНОВИТЕЛЬНЫЕ СВОЙСТВА СЕРОВОДОРОДА

Подействовать сероводородной водой на растворы окислителей:

- 1. бромной воды;
- 2. подкисленного раствора перманганата калия;
- 3. подкисленного раствора дихромата калия.

Какие внешние признаки протекания химических реакций вы наблюдаете?

метод	Составить ом.	уравнения	реакций.	Подобрать	коэффициенты	электронно-ионным
суш ф	а) Из раств				ьФИДОВ МЕТАЛ фидов, используя	ЛОВ в качестве осадителя
сульф	ид аммония 1. ZnS, CuS					
	2. MnS, PbS					
	3. CdS, CuS	·				
	4. ZnS, CdS	5.				
	Отметить п	цвет образуюі	цихся осад	ков		
	Написать у	равнения реа	кций в мол	екулярной и	сокращенной ион	ной форме.
какие		-			ь на них соляной	кислотой. Отметить,
	Написать у	равнения реа	кций.			

раство		объяснение ти этих суль	наблюдаемым фидов.	явлениям,	пользуясь	значениями	произведения
		действовать одения:	на растворы тех	же солей сер	ооводородно	ой водой.	
	Напис	сать уравнен	ия реакций.				
в раст		-	к растворов выпа				
		ить количес объяснения.	тво осадка в опы	тах а) и б)	_		·
) 11			ОЛИЗ СУЛЬ			
	Иссле	едовать хај	таллов сульфида рактер среды	раствора.			
среда			, pH ия реакций гидро		кулярной и 	ионной формо	.

б) К раствору соли алюминия прилить раствор сульфида аммония. Есть ли признаки реакции?
Нагреть пробирку. Наблюдения:
Разделить смесь на две части. Доказать экспериментально, что образовавшийся осадок является гидроксидом алюминия. Привести соответствующие реакции и их признаки.
Почему в обменной реакции не образуется сульфид алюминия?
Написать уравнение реакции в молекулярной и ионной форме.
6. ПОЛУЧЕНИЕ ПОЛИСУЛЬФИДОВ а) В пробирку налить 3–5 мл концентрированного раствора сульфида натрия и всыпать в него немного порошка серы. Нагреть раствор до кипения и добавить в него серы до образования насыщенного раствора. Наблюдать за изменением окраски раствора:
Написать уравнения реакций.

Привести структурную формулу полисульфида натрия и указать степени окисления элементов в соединении.

Какой вывод об устойчивости полисульфидов можно сделать на основании проделанного опыта?

Кислородные соединения серы

7. ПОЛУЧЕНИЕ ОКСИДА СЕРЫ (IV)

(Опыт проводить в вытяжном шкафу.)

Собрать прибор по рисунку. В колбу положить 2-3 ложечки сульфита натрия. В капельную воронку налить концентрированную H_2SO_4 .

	Почему для о	опыта берут тве	ердую соль и кон	центрированную				
H ₂ SO ₄ ?								

Каким методом следует собирать выделяющийся газ? Зачеркнуть лишний цилиндр.
Обосновать, привести расчет относительной плотности SO_2 по воздуху.
Приливать по каплям серную кислоту в колбу.
Наблюдения:

Собрать выделяющийся газ в цилиндр или в широкую пробирку, которые после наполнения газом хорошо закрыть пробками или стеклянной пластинкой. В конце опыта смесь для получения SO_2 можно слабо подогреть

Написать уравнение реакции получения оксида серы (IV).

Можно ли воспользоваться для получения SO_2 из Na_2SO_3 соляной или азотной кислотой? Дать объяснение. Привести уравнения соответствующих реакций.

HCl:
HNO ₃ :
8. СВОЙСТВА ОКСИДА СЕРЫ (IV) а) Затухание горящей лучинки в оксиде серы (IV) В пробирку, наполненную SO ₂ , внести горящую лучинку. Что наблюдается?
Дать объяснения.
б) Растворимость оксида серы (IV) в воде Пробирку с оксидом серы (IV), полученным в опыте 1, опрокинуть в ванну с водой, открыть пробку. Наблюдения (процесс ускоряется при покачивании пробирки):
Объяснить наблюдаемые явления.
Закрыть пробирку под водой пробкой и вынуть из воды. Разлить полученный раствор в две пробирки. В одну добавить нейтральный раствор лакмуса, в другую бросить кусочки ленты магния. Что наблюдаете? Объяснить. Привести уравнения соответствующих реакций. 1 пробирка —
2 пробирка —
На основании этих опытов сделать вывод о химическом характере полученного соединения.

9. ОКИСЛИТЕЛЬНЫЕ И ВОССТАНОВИТЕЛЬНЫЕ СВОЙСТВА ОКСИДА СЕРЫ (IV) И СЕРНИСТОЙ КИСЛОТЫ

а) В стакан, наполненный оксидом серы (IV), внести горящую ленту магния, держа е щипцами. Что наблюдаете?
Что представляет собой белое вещество, образующееся при реакции? Написать уравнение реакции, имея в виду, что вторым продуктом реакции являетс сера. Уравнять методом электронного баланса.
Какие свойства проявляет в этом опыте оксид серы (IV)?
б) Насытить оксидом серы (IV) 10 мл воды. Для этого отводную трубку от прибор опустить в пробирку с водой. Следить за тем, чтобы воду не затянуло в колбу с реакционно смесью. В пробирке провести опыт взаимодействия сернистой кислоты с сероводородно водой. Наблюдения:
Составить уравнение реакции. Уравнять методом электронного баланса.
Какие свойства в этом опыте проявляет сернистая кислота?
в) Налить в пробирку немного раствора HCl и насытить его SO ₂ . Затем опустить в раствор 1–2 кусочка цинка. Наблюдения:

-	раствора и доказать присутствие H ₂ S. Написать
уравнение соответствующей реакции в молек	зулярнои и сокращеннои ионнои формах.
Написать уравнения реакций взаимо	действия цинка с HCl и восстановления SO ₂
атомарным водородом в момент выделения. У	
1	
Какова роль цинка и SO ₂ ? Zn –	, SO ₂ –
г) Налить в пробирку немного окислит	еля:
1. бромная вода;	
2. йодная вода;	
3. раствор перманганата калия;	
4. раствор дихромата калия, подкислен	_
	вор H_2SO_3 (вместо раствора H_2SO_3 можно
использовать раствор Na_2SO_3 , подкисленный	
Изменение цвета раствора:	
	сставить коэффициенты электронно-ионным
методом.	
Какие свойства проявляет в этих опыта	
Привести величины стандартных ок	ислительно-восстановительных потенциалов и
подтвердить соответствующими расчетам	и возможность окисления H_2SO_3 данным
окислителем.	

10. ОБЕСЦВЕЧИВАНИЕ ФУКСИНА СЕРНИСТОЙ КИСЛОТОЙ

Что наблюдаете?
Нагреть полученный раствор.
Объяснить происходящие явления, учитывая, что фуксин имеет
цвет, а фуксин-сернистая кислота – бесцветная.
B каких случаях для процессов отбеливания предпочтительнее применять SO_2 , чем сильные окислители, например хлор? Почему?
11. РЕАКЦИЯ НА H_2SO_3 И ЕЕ СОЛИ К свежеприготовленному раствору H_2SO_3 или какой-нибудь ее соли добавить раствор $BaCl_2$. Что наблюдаете?
Что представляет собой выпадающий осадок?
Испытать растворимость осадка в HCl Написать уравнение реакции. Объяснить причину растворения осадка в HCl.
Полностью ли растворился осадок? Почему?
Написать уравнение реакции окисления H_2SO_3 в сульфат-анион кислородом воздуха. Уравнять методом электронного баланса.

12. СВОЙСТВА СЕРНОЙ КИСЛОТЫ

(Опыты **а, в, г (2) и д** проводить в вытяжном шкафу.)

a)	Взаимодействие	концентрированной	серной кислот	гы с неметаллами
----	----------------	-------------------	---------------	------------------

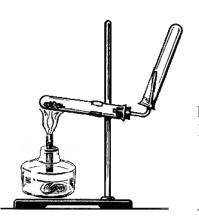
В фарфоровых чашках при осторожном нагревании провести реакции между
концентрированной H_2SO_4 и неметаллами:
1. серой;
2. углем.
Установить (по запаху), какой газ выделяется (осторожно!)
Составить уравнение реакции. Уравнять методом электронного баланса.
Какие свойства проявляет концентрированная H_2SO_4 в данной реакции?
б) Действие разбавленной H₂SO₄ на металлы
Провести реакции между разбавленной (2 H) H ₂ SO ₄ и металлами:
1. медь;
2. цинк;
3. железо;
4. алюминий;
5. олово.
Исходя из величины стандартных электродных потенциалов, сделать предположи-
тельный вывод о возможности протекания реакций между этими металлами и разбавленной
H_2SO_4 .
Доказать опытным путем, взаимодействует ли взятый металл с разбавленной (2 н.) H_2SO_4 .
Наблюдения:

Доказать опытным путем, какой газ выделяется в результате реакции.
Написать уравнения реакции в молекулярной и сокращенной ионной формах.
Какой ион является в этих реакциях окислителем?
в) Действие концентрированной серной кислоты на металлы 1. В пробирке при слабом нагревании провести реакцию между медью и концентри рованной серной кислотой. Установить по запаху (осторожно!), какой газ выделяется. После опыта, когда пробирка остынет, отлить 2–3 мл раствора в другую пробирк добавить 5–6 мл воды и взболтать. Отметить цвет раствора и сделать вывод, какие ион присутствуют в растворе и сделать вывод, какие ион присутствуют в растворе Какие ион написать уравнение реакции взаимодействия концентрированной H ₂ SO ₄ с меды Расставить коэффициенты электронно-ионным методом.
2. Подействовать концентрированной H_2SO_4 на цинк, железо, олово или алюмини (в соответствии с опытом 6б). Установить по запаху <i>(осторожно!)</i> , какой газ выделяется.
Пробирку немного подогреть. Наблюдать помутнение раствора, объяснить его причину.
Продолжать нагревание. Фильтровальной бумагой, смоченной раствором соли свинца, или по запах (осторожно!) обнаружить выделение сероводорода. Объяснить, написать соответствующе уравнение реакции.

${ m H}_{2}{ m SO}_{4},$ отличающихся друг от друга продуктами восстановления серной кислоты. Расставить коэффициенты электронно-ионным методом.
1.
2.
Почему при повышении температуры изменяется продукт реакции?
г) Дегидратирующие свойства серной кислоты 1. Действие серной кислоты на клетчатку. Стеклянной палочкой, смоченной раствором H_2SO_4 (1:1), написать что-либо на листе фильтровальной бумаги, а затем подсушить бумагу над пламенем горелки. Наблюдения:
Объяснить наблюдаемые явления, имея в виду, что общая формула клетчатки $[C_6H_{10}O_5]_n$. Написать уравнение реакции.
2. Действие серной кислоты на сахар. В химический стакан (100–150 мл) поместить 5 г (чайную ложку) мелко истолченного сахара, добавить по каплям воды до образования кашицы и 4–5 мл концентрированной H_2SO_4 . Размешать стеклянной палочкой до получения однородной массы и, оставив

Написать уравнения происходящих реакций между металлом и концентрированной

стеклянную палочку в стакане, наблюдать за происходящим.


Написать уравнение реа	акции, имея в виду, что форм	ула, сахара С ₁₂ H ₂₂ O ₁₁ .
Какой из двух образуют	цихся газов можно обнаружи	ть по запаху? (Осторожно!)
Из имеющихся в лабо	оированной H_2SO_4 . 1 –	их кислот обрать две такие, которые будут , 2 –
Поместить понемногу т	вердых солей в пробирки.	
Добавить концентриров	ванную H_2SO_4 и нагреть на воющихся летучих веществ зан	
Добавить концентриров	ванную H_2SO_4 и нагреть на во	
Добавить концентриров Характеристику получа	ванную H_2SO_4 и нагреть на воющихся летучих веществ зан	ести в таблицу.
Добавить концентриров Характеристику получа Признак	ванную H_2SO_4 и нагреть на воющихся летучих веществ зан	ести в таблицу.
Добавить концентриров Характеристику получа Признак цвет запах (осторожно!) характер получающихся	ванную H_2SO_4 и нагреть на воющихся летучих веществ зан	ести в таблицу.
Добавить концентриров Характеристику получа Признак цвет запах (осторожно!) характер получающихся веществ (установить с	ванную H ₂ SO ₄ и нагреть на воющихся летучих веществ зан	Индикатор —
Добавить концентриров Характеристику получа Признак цвет запах (осторожно!) характер получающихся веществ (установить с помощью влажной инди-	ванную H ₂ SO ₄ и нагреть на воющихся летучих веществ зан 1 соль Индикатор —	Индикатор —
Добавить концентриров Характеристику получа Признак цвет запах (осторожно!) характер получающихся веществ (установить с	ванную H ₂ SO ₄ и нагреть на воющихся летучих веществ зан 1 соль Индикатор — Среда —	Индикатор —
Добавить концентриров Характеристику получа Признак цвет запах (осторожно!) характер получающихся веществ (установить с помощью влажной индикаторной бумажки) предполагаемые продукты	ванную H ₂ SO ₄ и нагреть на воющихся летучих веществ зан 1 соль Индикатор — Среда — рН	Индикатор —

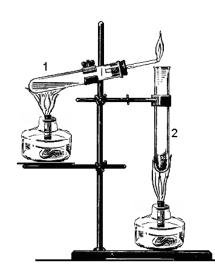
13. РЕАКЦИЯ НА СУЛЬФАТ-ИОН

	ользуясь таблицей растворимости солей, установить, какие катионы могут являться ими на ион ${ m SO_4}^{2-}$.
11	ровести две соответствующие реакции, отметить цвет и характер осадков.
1	осадок —
2	осадок —
Н	аписать уравнения реакций в молекулярной и сокращенной ионной формах.
11	на п
	спытать отношение полученных осадков к НС1. Привести уравнения реакций.
1	осадок —
2	осадок —
Д	ать объяснение, используя величину ПР.
	14. СВОЙСТВА ТИОСУЛЬФАТА НАТРИЯ
В	пробирку налить 1–2 мл одного из веществ:
1.	хлорной воды;
2.	бромной воды;
3.	раствора дихромата калия;
	раствора перманганата калия.
	астворы подкислить 1 – 2 каплями раствора $\mathrm{H}_2\mathrm{SO}_4$ (1:1). Прибавить равный объем
раствора	а тиосульфата натрия. Наблюдения:
	2
Д	оказать, что в полученном растворе имеются ионы SO_4^{2-} .

Написать уравнение реакции взаимодействия тиосульфата натрия с указанным веществом, расставить коэффициенты электронно-ионным методом.
зещеетвом, расставить кооффиционты опектронно пониван нетодом.
Чем является Na ₂ S ₂ O ₃ в данной реакции?
5. К раствору тиосульфата натрия добавить немного раствора крахмала и добавлять по каплям йодную воду. Наблюдения:
Написать уравнение реакции между тиосульфатом натрия и иодом с образованием тетратионата натрия, расставить коэффициенты электронно-ионным методом.
Чем является $Na_2S_2O_3$ в данной реакции?
Привести структурные формулы тиосульфата и тетратионата натрия, укать степени окисления серы.

АЗОТ И ЕГО СОЕДИНЕНИЯ

Азот и его водородные соединения


1. ПОЛУЧЕНИЕ АММИАКА

Собрать из сухих пробирок прибор по рисунку.

Хлорид аммония и гашеную известь в приблизительно равных объемах тщательно перемешать в фарфоровой чашке. Происходит ли образование аммиака при этих условиях?

Полученную смесь всыпать в пробирку (до половины), которую затем закры пробкой с газоотводной трубкой и закрепить в штативе так, чтобы ее дно было несколь выше отверстия (для чего?)	
Не сильно нагревать смесь и собирать выделяющийся аммиак в пробирку.	
Почему пробирку надо повернуть вверх дном?	
Как убедиться в том, что пробирка заполнена аммиаком?	
Через несколько минут, когда пробирка наполнится аммиаком, осторожно снять еструбки, не переворачивая, закрыть сухой пробкой и сохранить для следующего опыта. Написать уравнение реакции получения аммиака.	: c
2. СВОЙСТВА АММИАКА	
а) Растворение аммиака в воде	
Пробирку с аммиаком, полученным в предыдущем опыте, опустить отверстием внизванну с водой, под водой открыть пробку и слегка покачать пробирку. Что наблюдается?	В
Объяснить наблюдаемые явления.	
Когда вода перестанет подниматься, закрыть пробирку под водой и вынуть ее ванны.	
Испытать полученный раствор индикатором. Индикатор –	,
цвет, среда, рН	

Часть полученного раствора нагреть до кипения.	
Изменяется ли интенсивность запаха	, окраски?
Прокипятить раствор 2-3 мин. Отметить его цвет	, pH
Написать уравнения реакции взаимодействия	аммиака с водой, диссоциации и
разложения образующегося соединения.	
Какие равновесия устанавливаются в водном раст	воре аммиака?
Как смещаются эти равновесия при нагревании ра	аствора? Дать объяснение.
б) Взаимодействие аммиака с хлороводородом Один цилиндр (пробирку) наполнить аммиаком, к	второй – хлороводородом, ополоснув
пробирки соответственно концентрированными растеклянными пластинками (пробками).	
Соединить их отверстиями так, чтобы цилиндр с	аммиаком был сверху.
Вынуть пластинки и несколько раз перевернуть ц	1 2
Что наблюдается?	
Написать уравнение реакции.	

в) Горение аммиака

Собрать прибор по рисунку. В пробирку 1 налить 2–3 мл концентрированного раствора аммиака и закрыть ее пробкой с газоотводной трубкой. В пробирку 2 поместить немного кристаллического перманганата калия или смеси бертолетовой соли с прокаленным оксидом марганца (IV). Пробирки расположить так, чтобы конец газоотводной трубки находился над отверстием пробирки 2.

Нагревать смесь в пробирке 2. Когда начнет выделяться кислород, слабо нагреть раствор аммиака в пробирке 1.

Как обнаружить начало	выделения кислорода?
	поджечь у конца газоотводной трубки.
Написать уравнение реаг	кции и схему перехода электронов.
3.	РЕАКЦИЯ НА ИОН АММОНИЯ
	ного раствора соли аммония, например NH ₄ CI, прибавить 1-2
мл раствора NaOH и нагреть.	
=	о пробирки, не касаясь ее стенок, смоченную водой
среда, р	цикатор —, цвет,
Написать уравнения реаг	
**	
На влажной бумажке:	
Почему данный метод м не обнаруживается по запаху?	можно использовать для обнаружения аммиака, даже если он
4. ТЕРМИЧЕ	ССКОЕ РАЗЛОЖЕНИЕ СОЛЕЙ АММОНИЯ
	(Опыты б и в проводить в вытяжном шкафу)
п	а) В стеклянную трубку длиной 20–25 см поместить осередине NH ₄ Cl (плотным слоем толщиной 3–4 см),
	прессовывая соль при помощи стеклянных палочек.
	В каждый конец трубки положить по кусочку влажной
И	ндикаторной бумажки. Индикатор –,
Ш	вет .

трубки не изменит своего цвета.

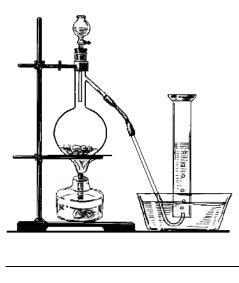
Укрепив трубку в штативе наклонно, прогреть всю

трубку, затем нагревать нижнюю часть слоя соли до тех пор, пока одна из вложенных индикаторных бумажек в концах

	Наблюдать изменение цвета индикатора.
обусл	Верхняя бумажка: цвет индикатора, среда, рН, изменение овлено
	Нижняя бумажка: цвет индикатора, среда,,
	Чем обусловлено разделение этих газов?
	Показать на рисунке направление движения продуктов разложения NH ₄ Cl. Написать уравнение реакции разложения хлорида аммония.
	б) Положить несколько кристаллов (NH_4) $_2SO_4$ на крышку тигля и нагреть на сетке. Наблюдения:
	Обнаружить выделяющийся аммиак, проделав соответствующий опыт.
масса	При $t^{\circ} = 357 ^{\circ}\text{C} (\text{NH}_{4})_{2}\text{SO}_{4}$ разлагается, отщепляя аммиак и плавясь; расплавленная состоит из смеси гидросульфата и сульфата аммония. Написать уравнение разложения $(\text{NH}_{4})_{2}\text{SO}_{4}$.
сетке	в) На крышку тигля поместить несколько кристаллов NH ₄ NO ₃ и осторожно нагреть на при спущенном стекле вытяжного шкафа. Остается ли на крышке тигля какое-либо вещество после разложения всех кристаллов?
	Составить уравнение реакции. Уравнять методом электронного баланса.

5. ВОЗГОНКА ХЛОРИДА АММОНИЯ

1 1	ного NH ₄ Cl, нагревать его, держа пробирку
наклонно. Наблюдать, что образуется на холодных	HOOTEN HOOFINGH
паолюдать, что ооразустся на холодных	частях прооирки.
Определить опытным путем, отличается	я ли возогнанное вещество по составу от ис-
хоного (проделать качественные реакции на кат	гион и анион). Написать уравнения реакций.
	<u> </u>
6. СВОЙСТВА ГИДРАЗИН.	А И ГИДРОКСИЛАМИНА
а) В пробирку налить 4–5 мл воды,	прибавить к ним две капли гидразина или
несколько кристаллов сульфата гидразина,	взболтать и затем влить несколько капель
раствора одного из реактивов:	
1. бромной воды;	
2. йодной воды;	
3. перманганата калия;	
4. дихромата калия.	
Что происходит?	
Написать уравнение реакции, расставить	коэффициенты электронно-ионным методом.
Какие свойства проявляет гидразин и его	о производные?
Составить структурные формулы гидраз	ина и сульфата гидразина.
гидразин	сульфат гидразина


б) Налить в пробирку 4-5 мл воды и растворить в ней несколько кристаллико
хлорида гидроксиламина. Прибавить несколько капель раствора одного из реактивов:
1. бромной воды;
2. йодной воды;
3. перманганата калия;
4. дихромата калия.
Что наблюдается?
Написать уравнение реакции, расставить коэффициенты электронно-ионным методом
Какую роль играет в реакции хлорид гидроксиламина?
Составить структурные формулы гидроксиламина и хлорида гидроксиламина.
Кислородные соединения азота
7. ПОЛУЧЕНИЕ И СВОЙСТВА ОКСИДА АЗОТА (I)
Положить в пробирку немного нитрата аммония и осторожно нагреть.
К отверстию пробирки поднести тлеющую лучинку. Что наблюдается?
Каков состав выделяющегося газа? Отметить его цвет (
и запах () Составить уравнение реакции. Уравнять методом электронного баланса.
8 ПОЛУЧЕНИЕ ОКСИЛА АЗОТА (II)

8. ПОЛУЧЕНИЕ ОКСИДА АЗОТА (II)

(Работу проводить в вытяжном шкафу.)

Собрать прибор по рисунку. В колбу поместить 10–15 г медных стружек, в капельную воронку налить разбавленную (1:1) азотную кислоту.

Прилить немного кислоты к медным стружкам. Если реакция сразу не начнется, очень слабо погреть.

	Наблюдения:
	Цвет газа в колбе в начале опыта –,
	через несколько минут –
	Цвет газа в цилиндре –
	Цвет раствора в колбе –
Hallo	Объяснить изменение цвета газа в колбе. Написать уравнение соответствующей реакции, расставить коэффициенты методом электронного баланса.
Когда выходящий из тру собрать его в цилиндр (банку	ску реакционной смеси?
капельной воронки в колбу.	(II)
	дров оксидом азота (II) закрыть их под водой стеклянными
пластинками, вынуть из ванны и	-
Отметить цвет газа.	
Написать уравнение реакц	ции, расставить коэффициенты электронно-ионным методом.
O CI	ВОЙСТВА ОКСИДА АЗОТА (II)
	пу проводить в вытяжном шкафу.)
•	ги провосить в выпижном шкифу.) сидом азота (II) внести горящую лучинку.
	лидом азота (п) внести горящую лучинку.
Дать объяснение.	

б) Немного красного фосфора положить в железную ложечку, поджечь его на горели и, когда он хорошо разгорится, внести в цилиндр (в банку) с оксидом азота (II). Что наблюдается? Что происходит с горящим фосфором в атмосфере оксид
азота (II)?
Составить уравнение реакции. Уравнять методом электронного баланса.
Какое свойство проявляет NO в этой реакции?
в) Открыть цилиндр (банку) с оксидом азота (II) и на фоне белой бумаги наблюдать з изменением окраски газа.
Составить уравнение реакции. Уравнять методом электронного баланса.
Какое свойство проявляет в ней оксид азота (II)?
г) Налить около 1/4 пробирки свежеприготовленного насыщенного раствора сульфат железа (II) и пропустить через него ток оксида азота (II).
Отметить, как изменяется цвет раствора.
Написать уравнение реакции образования нитрозо-железо (II)-сульфата.
Нагреть раствор. Что происходит?
Объяснить наблюдаемое явление.
Для какой цели используется реакция?

10. ПОЛУЧЕНИЕ ОКСИДА АЗОТА (IV)

(Работу проводить в вытяжном шкафу)

Собрать прибор по рисунку (опыт 2). В колбу положить немного медных стружек, в воронку налить $5{\text -}10$ мл концентрированной HNO_3 .

	Каким методом можно собирать выделяющийся газ? Объяснить.
	Кислоту вливать в колбу небольшими порциями. Наблюдения:
стекля	Собрать выделяющийся газ в цилиндр (банку или пробирку) и, закрыв его янными пластинками, сохранить для опыта 6. Написать уравнение реакции, расставить коэффициенты электронно-ионным методом.
	11. СВОЙСТВА ОКСИДА АЗОТА (IV) (Опыт а) проводить в вытяжном шкафу.) а) Испытать, горят ли в оксиде азота (IV) тлеющая лучинка и зажженный красный
фосфо	
	Зажженный красный фосфор
	Написать уравнения реакций, уравнять методом электронного баланса.
оксид	Сопоставив результаты этого опыта с результатами опыта 3, сделать вывод, какой азота легче отдает кислород.

б) Опустить цилиндр (пробирку) с оксидом азота (IV), полученным в опыте 4, с водой и снять стеклянную пластинку. Что происходит?	в ванну
Когда уровень воды в цилиндре перестанет изменяться, закрыть цилиндр стек	клянной
пластинкой и вынуть из ванны.	
Испытать полученный раствор индикаторной бумажкой.	
Индикатор —, цвет, среда	
рН, окраска обусловлена	
Объяснить наблюдаемые явления. Написать уравнение реакции в молекуля	рном и
ионном виде.	
12. ОКИСЛИТЕЛЬНЫЕ И ВОССТАНОВИТЕЛЬНЫЕ СВОЙСТВА АЗОТИСТОЙ КИСЛОТЫ	
а) Налить в пробирку 2–3 мл раствора одного из реактивов:	
1. иодида калия;	
2. сульфида натрия.	
Подкислить его разбавленной ${ m H}_2{ m SO}_4$ и затем прибавить к нему немного р	аствора
$NaNO_2$.	
Изменение цвета раствора –	
Как доказать, какое выделилось вещество?	
Написать уравнение реакции, расставить коэффициенты электронно-ионным ме	етодом.
б) Налить в пробирку 2–3 мл раствора одного из реактивов:	
1. перманганата калия;	
2. дихромата калия;	
3. бромной воды;	
4. хлорида железа (III).	
Подкислить его разбавленной H_2SO_4 и затем прибавить к нему немного раствора N Что происходит?	$NaNO_2$.
r 3	

Написать уравнение реакции, расставить коэффициенты электронно-ионным методом.
Какие свойства проявляет HNO ₂ в опытах а и б ?
13. ПОЛУЧЕНИЕ НИТРИТА КАЛИЯ
Прокалить в пробирке, закрепленной в штативе, $2-3\ \Gamma$ KNO $_3$ до прекращения выделения газа.
Определить, какой газ выделяется
После охлаждения пробирки растворить ее содержимое в воде и доказать, что в растворе присутствует соль азотистой кислоты. Привести соответствующее уравнение реакции, расставить коэффициенты электронно-ионным методом. Указать признак реакции.
Написать уравнение реакции термического разложения KNO_3 . Уравнять методом электронного баланса.
14. СВОЙСТВА АЗОТНОЙ КИСЛОТЫ
(Работу проводить в вытяжном шкафу.)
а) Действие концентрированной азотной кислоты на металлы
В пробирку положить кусочек металла:
1. цинка;
2. олова.
Затем прибавить $1-2$ мл концентрированной HNO_3 .
Наблюдения:
Vэмой выпаняется гоо?

Написать уравнение реакции, имея в виду, что в пробирке с оловом образуется H_2SnO_3 , расставить коэффициенты электронно-ионным методом.
1120110 3, расставить коэффиционты электронно пошим методом.
б) Действие умерено разбавленной азотной кислоты на металлы
Положить в пробирку немного железных опилок или стружек и прибавить 1–2 мл
умеренно разбавленной HNO ₃ . Какой выделяется газ?
Какого цвета образуется раствор?
До какой степени окисления окисляется железо в данной реакции?
Написать уравнение реакции, расставить коэффициенты электронно-ионным методом.
в) Действие сильно разбавленной азотной кислоты на металлы
Положить в пробирку кусочек металла:
1. цинка;
2. олова.
Прилить в обе пробирки 1-2 мл сильно разбавленной HNO ₃ . В течение нескольких
минут жидкость взбалтывать, затем слить раствор с непрореагировавшего металла и доказать
наличие в растворе иона NH_4^+ . Как?
Написать уравнение реакции, расставить коэффициенты электронно-ионным методом.
a the Space of Space and Space of Space

г) Пассивирование алюминия «дымящей» азотной кислотой В пробирку налить немного 2 Н раствора НСІ и погрузить в нее кусочек алюминия.
Что наблюдается? Затем вынуть кусочек алюминия из кислоты, промыть его водой и, протере фильтровальной бумагой, опустить в «дымящую» HNO ₃ .
Что наблюдается? Через 3–4 мин осторожно вынуть алюминий и, промыв его водой (не встряхивать снова погрузить в HCl. Выделяется ли теперь водород?
Дать объяснение.
Написать уравнение реакции пассивации алюминия, расставить коэффициент электронно-ионным методом.
д) Действие концентрированной азотной кислоты на неметаллы В фарфоровую чашку налить немного концентрированной HNO ₃ , бросить кусоче серы и нагреть. Что происходит? После охлаждения жидкости вылить ее в пробирку с водой и обнаружить в раствор H ₂ SO ₄ . Как?
Написать уравнение реакции, расставить коэффициенты электронно-ионным методом
е) Действие азотной кислоты на сложные вещества 1. В пробирку положить немного сульфида меди (II) CuS и прилить 1–2 м концентрированной HNO ₃ . Что происходит? Объяснить растворение CuS
Написать уравнение реакции, расставить коэффициенты электронно-ионным методом

Какую роль играет азотная кислота?
2. Несколько капель концентрированной HNO_3 добавить к небольшому количеству раствора индиго, лакмуса или фуксина и взболтать. Что происходит?
Дать объяснение.
15. РАЗЛОЖЕНИЕ НИТРАТОВ ПРИ НАГРЕВАНИИ
(Опыты $\pmb{\delta}$ и $\pmb{\epsilon}$ проводить в вытяжном шка $\pmb{\phi}$ у.)
 а) Прокалить в пробирке, закрепленной в штативе, около 1 г NaNO₃. Что наблюдается?
Доказать, какой выделяется газ и какое вещество остается в пробирке, проделав опыты после ее охлаждения. Определение газа:
Определение вещества в остатке (написать уравнение реакции, расставить коэффициенты электронно-ионным методом):
Составить уравнение реакции разложения NaNO ₃ . Уравнять методом электронного баланса.
б) Несколько кристалликов соли поместить в фарфоровую чашечку или пробирку, закрепить ее горизонтально в штативе и сильно нагревать: 1. Cu(NO ₃) ₂ ·3H ₂ O; 2. AgNO ₃ . Отметить, какие изменения происходят с солью.
Какие выделяются газы?
Что остается в пробирке после опыта?

Составить уравнение реакции. Уравнять методом электронного баланса.
ФОСФОР И ЕГО СОЕДИНЕНИЯ
Правила работы с белым фосфором
Белый фосфор — ядовитое и очень огнеопасное вещество (температура воспламенения около 40 °C), вызывает болезненные и трудно заживающие ожоги. При обращении с ним необходимо соблюдать следующие меры предосторожности: 1) хранить под водой;
2) не трогать руками, брать пинцетом или щипцами;
3) резать в толстостенной посуде (например, фарфоровой ступке) под водой комнатной температуры или – лучше – в теплой воде, но не выше 25–30 °С. Если для резки фосфора используется теплая вода, то перед опытом фосфор перенести в холодную воду; 4) высушивать как можно быстрее, особенно если в помещении тепло, прикладыванием фильтровальной бумаги к кусочкам фосфора (не тереть);
5) не ронять на пол, упавший кусок немедленно отыскать;
6) мелкие остатки собрать в воду, отфильтровать и вместе с влажным фильтром
сжечь на сетке под тягой;
7) воспламенившийся фосфор тушить, засыпая песком или заливая водой; 8) воспламенившийся на руке или на теле фосфор гасить, закрывая полотенцем; сейчас же хорошо промыть обожженное место 10%-м раствором AgNO ₃ или KMnO ₄ и только затем сделать обычную перевязку. При серьезных ожогах после оказания первой помощи следует обратиться к врачу.
1. АЛЛОТРОПИЯ ФОСФОРА (ПОЛУЧЕНИЕ БЕЛОГО ФОСФОРА)
(Работу проводить в вытяжном шкафу.)
Положить немного сухого красного фосфора в пробирку, закрыть ватой, закрепить в штативе в слегка наклонном положении и нагреть небольшим пламенем горелки.
Нагревание производить осторожно, следить, чтобы пары фосфора не загорались при
выходе из пробирки!
Наблюдать появление налета белого фосфора на холодных частях пробирки.
Отнести пробирку в темное место и наблюдать свечение фосфора. Цвет свечения

Взять немного белого фосфора стеклянной палочкой и вынуть из пробирки. наблюдается?	Что
Написать уравнение происходящей реакции.	
На основании опыта сделать вывод, какая из аллотропных модификаций фосф химически более активна	ора
2. ПОЛУЧЕНИЕ ОКСИДА ФОСФОРА (V) (ФОСФОРНОГО АНГИДРИДА) (Работу проводить в вытяжном шкафу.) В фарфоровую чашку, поставленную на асбестовую сетку, полож 0,4–0,5 г (на кончике шпателя) красного фосфора. Над чашкой на небольшом расстоянии (около 0,5 см) от сетки укрепить переверну сухую воронку. Зарисовать схему прибора.	
Зажечь фосфор накаленной стеклянной палочкой. Цвет пламени — Какое соединение осаждается на стенках воронки? Отметить его признаки.	
Написать уравнение реакции.	
Когда весь фосфор сгорит, вложить воронку в кольцо штатива и оставить опыта 4а.	для
3. РЕАКЦИИ НА ИОНЫ ФОСФОРНЫХ КИСЛОТ а) К раствору гидрофосфата натрия добавить раствор AgNO ₃ . Что наблюдается?	
Испытать отношение осадка к раствору азотной кислоты.	

Написать соответствующие уравнени ионной формах.	ия реакций в молекулярной и сокращенной
б) К небольшому объему раствора м HNO ₃ , прибавить несколько капель раствора I Смесь нагреть. Что наблюдается? Како	
Уравнение данной реакции: $H_3PO_4 + 12(NH_4)_2MoO_4 + 21HNO_3 \rightarrow (NH_4)_2MoO_4 + 21HO_4 \rightarrow (NH_4)_2MoO_4 + 21HO_4 \rightarrow (NH_4)_2MoO_4 + 21HO_4 \rightarrow (NH_4)_2MoO_4 + 21HO_4 \rightarrow (NH_4)_2MoO_4 \rightarrow (NH_4)_2MoO_4 + 21HO_4 \rightarrow (NH_4)_4MoO_4 \rightarrow (N$	NH ₄) ₃ H ₄ [P(Mo ₂ O ₇) ₆]↓ + 21NH ₄ NO ₃ + 10H ₂ O сокращенной ионной формах.
в) К растворам мета- и дифосфата на AgNO ₃ . Каков цвет выпавших осадков?	грия в отдельных пробирках добавить раствор 2
Испытать отношение осадков к раствор 1	oy HNO ₃ . 2
Написать уравнения реакций в молекул 1.	иярной и сокращенной ионной формах. 2.
В какой среде осаждаются соли серебра	а мета- и дифосфорной кислот?
г) Налить в две пробирки немного раст. Прилить в одну пробирку раствор дифосфата натрия, затем в обе пробирки доба Наблюдать, что происходит с белком в	метафосфата натрия, во вторую – раствор вить раствор уксусной кислоты.

Заполнить сравнительную таблицу определения ионов фосфорных кислот в растворе:

а) Пол	ощих им ионов: 4. ПО	формулы мета-, ПУЧЕНИЕ ФОСФОРН		орных кислот и
PO ₄ ³⁻ Приве оответствун а) По Оксид	ощих им ионов: 4. ПО. (Опып	ПУЧЕНИЕ ФОСФОРН п б) проводить в вытя.	ных кислот	орных кислот и
Приве оответствун а) По л Оксид	ощих им ионов: 4. ПО. (Опып	ПУЧЕНИЕ ФОСФОРН п б) проводить в вытя.	ных кислот	орных кислот и
а) По л Оксид	ощих им ионов: 4. ПО. (Опыт	ПУЧЕНИЕ ФОСФОРН п б) проводить в вытя.	ных кислот	орных кислот и
Оксид	(Опып	n б) проводить в вытя:		
Оксид	(Опып	n б) проводить в вытя:		
Оксид	(Опып	n б) проводить в вытя:		
Оксид	(Опып	n б) проводить в вытя:		
Оксид	(Опып	n б) проводить в вытя:		
Оксид	*	, -	эжном шкафу.)	
Оксид	гучение кислот фо			
	фосфора (V) полу	сфора из оксида фосо ченный в опыте 2, см	` `	ой волой со стенок
		Terribin b offbite 2, em	дистиянировани	он водон со степок
_		прозрачным, немного	отлить его в другую в	пробирку.
Нейтр	ализовать в после	дней несколькими ка	аплями раствора сод	цы до слабокислой
,	•	по изменению цвета и	•	*
Опред	елить, какая кисло	га образовалась в резу.	льтате опыта. Объясн	нить.
Напис	ать уравнения про	исходящих реакций в	з молекулярной и сог	кращенной ионной

Оставшуюся часть раствора вылить в стакан, добавить $10-15\,\mathrm{mn}$ воды и $1-2\,\mathrm{mn}$ концентрированного раствора $\mathrm{HNO_3}$ (для ускорения реакции присоединения) и кипятить $5\,\mathrm{muh}$, добавляя воду.

натрия индикаторной бумах	жкой (индикатор – _).	
Реактив	Формула	Цвет индикатора	рН
фосфат натрия			
гидрофосфат натрия			
дигидрофосфат натрия			
Написать уравнение	реакции гидролиза	фосфата натрия по перв	ой ступени.
Накопление каких ис	онов препятствует д	альнейшему гидролизу	этой соли?
Почему в растворе реакции.	NaH ₂ PO ₄ среда ки	слая? Написать уравне	ение соответствующей
фосфат кальция.	еся в лаборатории ј	реактивы, получить гид	
Сделать вывод о раст	гворимости в воде п	олученных солей.	
К осадку СаНРО4 до	бавить раствор уксу	сной кислоты. Что прои	сходит?
Дать объяснение.			

Проверить свои предположения, испытав растворы гидро-, дигидрофосфата и фосфата

Написать уравнение реакции.
в) Получение фосфатов железа и алюминия В одну пробирку налить немного раствора хлорида железа (III), в другую – сульфа
алюминия. В каждую из пробирок добавить немного раствора ацетата натрия и гидрофосфа:
натрия. Отметить цвет выпавших осадков. Что они собой представляют? 1 2
Какую роль играют ацетат-ионы?
Написать уравнения реакций получения фосфатов железа и алюминия в молекулярно и сокращенной ионной формах.
Испытать отношение осадков к раствору HCl. 1
Объяснить.
6. ПОЛУЧЕНИЕ И СВОЙСТВА ГАЛОГЕНИДОВ ФОСФОРА
а) Получение хлорида фосфора (V) В пробирку, наполненную хлором (получение хлора см. в опыте 1 работ «Галогены»), бросить немного красного фосфора. Что наблюдается?
Отметить цвет и агрегатное состояние полученного соединения.
Написать уравнение реакции.

	б) Гидролиз хлорида фосфора (V)
	В пробирку положить немного PCl ₅ , добавить 3–5 мл воды и прокипятить.
	Полученный раствор испытать индикаторной бумажкой. Индикатор –,
цвет	, pH, среда
	Затем добавить раствор AgNO ₃ в избытке. Что происходит? Каков цвет и состав
осадк	
	Отфильтровать жидкость от осадка и к фильтрату прилить раствор Na_2CO_3 до
выпа,	дения осадка (цвет, состав).
	На образование каких веществ при взаимодействии PCl ₅ с водой указывают реакции
c AgN	NO_3 ?
	TT 0 0 0 1
	Написать уравнения реакций в молекулярной и сокращенной ионной формах.
	Написать уравнение реакции гидролиза PCl ₅ в молекулярной, полной и сокращенной
ионне	ой формах.
	4. L. H. L. H. H. L. H.
_	
	МЫШЬЯК, СУРЬМА, ВИСМУТ И ИХ СОЕДИНЕНИЯ
	Все соединения мышьяка, сурьмы, висмута очень ядовиты, поэтому
	при работе с ним необходимо соблюдать осторожность.
	1. СВОЙСТВА СОЛЕЙ МЫШЬЯКОВИСТОЙ КИСЛОТЫ
	а) К раствору тетрагидроксоарсената (III) натрия Na[As(OH) ₄] (или ортоарсенита
натпі	ия Na ₃ AsO ₃) добавить раствор нитрата серебра до выпадения осадка. Отметить вид и
•	осадка.
цьст	oougna.
-	
	Написать уравнение реакции в молекулярной и сокращенной ионной формах.
	тыпленть уравнение реакции в молекулярной и сокращенной ионной формах.

б) К 2–3 мл раствора тетрагидроксоарсената (III) натрия (или ортоарсенита натрия) добавить йодную воду. Наблюдения:
Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом.
Какие свойства проявляет в этом опыте тетрагидроксоарсенат (III) натрия?
2. ПОЛУЧЕНИЕ И СВОЙСТВА МЫШЬЯКОВОЙ КИСЛОТЫ И ЕЕ СОЛЕЙ (Опыт a проводить в вытяжном шкафу.) а) К раствору арсената натрия добавить раствор нитрата серебра. Отметить вид и цвет полученного осадка
Написать уравнение реакции в молекулярной и сокращенной ионной формах.
Сравнить опыты 1а и 2а и сделать вывод, как, пользуясь раствором нитрата серебра, распознать присутствие в водном растворе ионов $[As(OH)_4]^-$ и AsO_4^{3-} .
б) К 1 мл раствора КІ добавить 2–3 мл концентрированного раствора НС1 и 2–3 мл раствора арсената натрия.
Наблюдения:
Объяснить изменение цвета раствора.

Проделать опыт, подтверждающий предложенное объяснение.	
Написать уравнение реакции. Подобрать и расставить коэффициенты электронно- ионным методом.	
Какие свойства проявляет арсенат натрия в этой реакции?	
3. ПОЛУЧЕНИЕ И СВОЙСТВА ГИДРОКСИДА СУРЬМЫ (III) а) Получить осадок гидроксида сурьмы (III). Избегать избытка щелочи (почему?).	
Отметить цвет и вид осадка	
б) Разделить полученный осадок на две части. Испытать его отношение к раствору HCl и к раствору NaOH. Записать наблюдения и уравнения реакций в молекулярной и ионной форме. +HCl:	
+NaOH:	

Раствор тетрагидроксостибата (III) натрия $Na[Sb(OH)_4]$ сохранить для следующего опыта.

	Сделать вывод о химических свойствах гидроксида сурьмы (III).	
перво	ЗОССТАНОВИТЕЛЬНЫЕ СВОЙСТВА ТЕТРАГИДРОКСОСТИБАТА (III) НАТРИЯ К раствору AgNO ₃ добавлять по каплям раствор аммиака до растворения начально появляющегося осадка Ag ₂ O. Отметить вид осадка и конечного раствора. Написать уравнение реакции в сулярной и сокращенной ионной формах.	
тетраг	К полученному раствору нитрата диамминосеребра добавить щелочной раствор гидроксостибата (III) натрия $Na[Sb(OH)_4]$, полученный в опыте 36 , и нагреть. Наблюдения:	
	Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом.	
	Какие свойства проявляет тетрагидроксостибат (III) натрия в этой реакции?	
цвет_	5. ГИДРОЛИЗ СОЛЕЙ СУРЬМЫ (III) Немного хлорида сурьмы (III) растворить в нескольких каплях воды. Раствор испытать индикаторной бумажкой. Индикатор —	
	Объяснить изменение цвета индикатора.	

Прибавить дистиллированной воды до появления осадка. Цвет и вид осадка:		
Объяснить, почему при разбавлении рас	створа появляется осадок.	
Написать уравнение реакции гидролиза осадок представляет собой оксохлорид сурьмь	хлорида сурьмы (III), учитывая, что выпавший и (III) SbOCl.	
Добавить к полученному осадку нескол Наблюдать происходящие изменения.	лько капель концентрированного раствора НС1.	
Объяснить наблюдаемые явления.		
При дальнейшем разбавлении раствора водой снова наблюдать выпадение осадка. Дать объяснение.		
Составить структурную формулу	OVERANT OF THE CHILD	
хлорида дигидроксосурьмы (III)	оксохлорида сурьмы (III)	
Объяснить, почему происходит данное превращение, составить уравнение реакции.		

6. ПОЛУЧЕНИЕ СУРЬМЯНОЙ КИСЛОТЫ И ЕЕ СВОЙСТВА

(Работу проводить в вытяжном шкафу.)

Осадок сурьмяной кислоты (можно использовать оксид сурьмы (V)) разделить на две пробирки.

Испытать отношение осадка к раствору NaOH и к концентрированному раствору HCl.
Записать наблюдения и уравнения реакций в молекулярной и ионной формах.
+HCl:
+NaOH:
Сделать вывод о химических свойствах сурьмяной кислоты.
Полученный раствор хлорида сурьмы (V) сохранить для опыта 7.
полученный раствор хлорида сурьмы (у) сохранить для опыта 7.
7. ОКИСЛИТЕЛЬНЫЕ СВОЙСТВА СОЕДИНЕНИЙ СУРЬМЫ (V)
К раствору KI добавить немного раствора хлорида сурьмы (V), полученного в опыте 5.
Наблюдения:
Доказать присутствие свободного иода.
Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом.
Какие свойства проявляет SbCl ₅ в этой реакции?

8. ВЗАИМОДЕЙСТВИЕ МЕТАЛЛИЧЕСКОГО ВИСМУТА С РАСТВОРАМИ КИСЛОТ (Работу проводить в вытяжном шкафу.)

В пробирку положить кусочек металлического висмута и добавить немного кислоты:

- 1. концентрированного раствора H₂SO₄;
- 2. разбавленного раствора HNO₃;
- 3. концентрированного раствора НNО₃.

Протекает ли реакция на холоде? Почему?
Осторожно нагреть пробирки. Наблюдения:
Опытным путем установить, какой газ выделяется при взаимодействии висмута с
раствором кислоты.
Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом.
9. ПОЛУЧЕНИЕ ОКСИДА ВИСМУТА (III)
Несколько кристалликов нитрата висмута (III) (цвет) прокалить на
крышке тигля до разложения соли. Какие продукты реакции образуются? Отметить их цвет.
Наблюдать последующее изменение цвета продукта реакции, происходящее при охлаждении.
Составить уравнение реакции термического разложения нитрата висмута (III). Уравнять методом электронного баланса.
Написать уравнение реакции последующего превращения.
10. ПОЛУЧЕНИЕ И СВОЙСТВА ГИДРОКСИДА ВИСМУТА (III)
Из нитрата висмута (III) получить гидроксид висмута (III). Написать уравнение реакции (в молекулярной и сокращенной ионной форме) получения гидроксида висмута (III), отметить его цвет
,

	ка к разбавленному раствору кислоты и к
избытку раствора щелочи. Написать уравнени	ия реакций в молекулярной и сокращенной
ионной формах. Что наблюдается?	
+ кислота:	
+щелочь:	
Какие свойства проявляет гидроксид висм	лута?
11. ГИДРОЛИЗ СОЛЕ	· /
	ескольких каплях воды. Полученный раствор
испытать индикаторной бумажкой. Индикатор среда, рН	–, цвет,
Объяснить изменение цвета индикатора.	
Прибавить дистиллированной воды до поз	явления осадка. Отметить цвет и вид осадка:
Объяснить, почему при разбавлении растн	вора появляется осадок.
Написать уравнение реакции гидроли выпавший осадок представляет собой оксонитра	тза нитрата висмута (III), учитывая, что ат висмута (III).
Составить структурную формулу	
нитрата дигидроксовисмута (III)	оксонитрата висмута (III)

12. ОКИСЛИТЕЛЬНЫЕ СВОЙСТВА ВИСМУТАТОВ В раствор сульфата марганца (II), подкисленного 2 Н раствором НNО3, внести немного твердого висмутата натрия или калия. Дать смеси отстояться до оседания избытка висмутата. Отметить окраску раствора. Каким ионом она обусловлена? Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом. Какие свойства проявляет в этой реакции висмутат натрия? Какова роль азотной кислоты? КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ 1. ОБРАЗОВАНИЕ И ДИССОЦИАЦИЯ СОЕДИНЕНИЙ С КОМПЛЕКСНЫМ КАТИОНОМ а) Налить в пробирку 1–2 мл раствора АgNO3 и добавить немного раствора NaCl. Написать уравнение реакции в молекулярной и сокращенной ионной формах, указать признак реакции. К образовавшемуся осадку добавлять раствор аммиака до его растворения. Отметить цвет раствора. Написать уравнение реакции в молекулярной и сокращенной ионной формах, учитывая, что координационное число Ag ⁺ равно двум.	Объяснить, почему происходит данное превращение, составить уравнение реакции.
КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ 1. ОБРАЗОВАНИЕ И ДИССОЦИАЦИЯ СОЕДИНЕНИЙ С КОМПЛЕКСНЫМ КАТИОНОМ а) Налить в пробирку 1–2 мл раствора AgNO ₃ и добавить немного раствора NaCl. Написать уравнение реакции в молекулярной и сокращенной ионной формах, указать признак реакции. К образовавшемуся осадку добавлять раствор аммиака до его растворения. Отметить цвет раствора. Написать уравнение реакции в молекулярной и сокращенной ионной формах, учитывая, что координационное число Ag ⁺ равно двум.	В раствор сульфата марганца (II), подкисленного 2 Н раствором HNO ₃ , внести немного твердого висмутата натрия или калия. Дать смеси отстояться до оседания избытка висмутата. Отметить окраску раствора. Каким ионом она обусловлена?
КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ 1. ОБРАЗОВАНИЕ И ДИССОЦИАЦИЯ СОЕДИНЕНИЙ С КОМПЛЕКСНЫМ КАТИОНОМ а) Налить в пробирку 1–2 мл раствора AgNO ₃ и добавить немного раствора NaCl. Написать уравнение реакции в молекулярной и сокращенной ионной формах, указать признак реакции. К образовавшемуся осадку добавлять раствор аммиака до его растворения. Отметить цвет раствора. Написать уравнение реакции в молекулярной и сокращенной ионной формах, учитывая, что координационное число Ag ⁺ равно двум.	
КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ 1. ОБРАЗОВАНИЕ И ДИССОЦИАЦИЯ СОЕДИНЕНИЙ С КОМПЛЕКСНЫМ КАТИОНОМ а) Налить в пробирку 1–2 мл раствора AgNO ₃ и добавить немного раствора NaCl. Написать уравнение реакции в молекулярной и сокращенной ионной формах, указать признак реакции. К образовавшемуся осадку добавлять раствор аммиака до его растворения. Отметить цвет раствора. Написать уравнение реакции в молекулярной и сокращенной ионной формах, учитывая, что координационное число Ag ⁺ равно двум.	
1. ОБРАЗОВАНИЕ И ДИССОЦИАЦИЯ СОЕДИНЕНИЙ С КОМПЛЕКСНЫМ КАТИОНОМ а) Налить в пробирку 1–2 мл раствора AgNO ₃ и добавить немного раствора NaCl. Написать уравнение реакции в молекулярной и сокращенной ионной формах, указать признак реакции	
1. ОБРАЗОВАНИЕ И ДИССОЦИАЦИЯ СОЕДИНЕНИЙ С КОМПЛЕКСНЫМ КАТИОНОМ а) Налить в пробирку 1–2 мл раствора AgNO ₃ и добавить немного раствора NaCl. Написать уравнение реакции в молекулярной и сокращенной ионной формах, указать признак реакции	комплексные соелинения
цвет раствора Написать уравнение реакции в молекулярной и сокращенной ионной формах, учитывая, что координационное число Ag^+ равно двум.	1. ОБРАЗОВАНИЕ И ДИССОЦИАЦИЯ СОЕДИНЕНИЙ С КОМПЛЕКСНЫМ КАТИОНОМ а) Налить в пробирку 1–2 мл раствора AgNO ₃ и добавить немного раствора NaCl. Написать уравнение реакции в молекулярной и сокращенной ионной формах, указать
учитывая, что координационное число ${\rm Ag}^+$ равно двум.	
В каком направлении амашана равиорама разучии комплаказабразарачия для и 2	Написать уравнение реакции в молекулярной и сокращенной ионной формах,
ъ каком направлении смещено равновесие реакции комплексоооразования? Почему?	В каком направлении смещено равновесие реакции комплексообразования? Почему?

6) Налить в пробирку 1–2 мл раствора CuCl ₂ и прибавлять по каплям раствор аммиака до образования осадка Cu(OH) ₂ . Написать уравнение реакции в молекулярной и сокращенной ионной формах, указать признак реакции.
Затем добавить избыток раствора аммиака до растворения осадка. Сравнить окраску ионов Cu ²⁺ с окраской полученного раствора
Присутствие каких ионов сообщает окраску раствору?
Какое основание является более сильным: гидроксид меди (II) или соответствующее комплексное основание? Почему?
Полученный раствор оставить для опыта 4 .
2. ОБРАЗОВАНИЕ И ДИССОЦИАЦИЯ СОЕДИНЕНИЙ С КОМПЛЕКСНЫМ АНИОНОМ а) К 1–2 мл раствора нитрата ртути (II) <i>(сильный яд!)</i> добавлять по каплям разбавленный раствор КI до образования осадка HgI ₂ . Написать уравнение реакции. Отметить цвет осадка.
Затем добавить избыток раствора KI до растворения осадка. Наблюдения:
Написать уравнение реакции в молекулярной и сокращенной ионной формах, учитывая, что координационное число ${\rm Hg}^{+2}$ равно четырем.
б) В пробирку с 2–3 мл раствора $Bi(NO_3)_3$ добавлять по каплям 0,5 H раствор KI до выпадения осадка BiI_3 . Написать уравнение реакции. Отметить цвет осадка.

Затем добавить еще несколько капель раствора КІ до растворения выпавшего осадка. Каков цвет полученного раствора?		
Может ли эта окраска обусловливаться	присутствием ионов K^+ , Γ или Bi^{3+} ?	
Написать уравнение реакции образова координационное число Bi ³⁺ равно четырем.	ния комплексного соединения, учитывая, что	
Написать уравнения диссоциации получ	ненного комплексного иона.	
3. РАЗЛИЧИЕ МЕЖДУ ПРОСТЫМИ И КО а) К 1–2 мл раствора FeCl ₃ добавить нем Наблюдения:	-	
Написать уравнение реакции в молекуля	ярной и сокращенной ионной формах.	
Для чего можно применять эту реакцию	9?	
б) Доказать, обнаруживается ли ис характерную реакцию, как в опыте <i>3a</i> .	он ${\rm Fe}^{3+}$ в растворе ${\rm K}_3[{\rm Fe}({\rm CN})_6]$, проделав	
Объяснить.		
в) Налить в одну пробирку немного добавить в каждую из них одинаковый объем р Наблюдения: 1 пробирка —	·	
Написать уравнения реакций в молекуля	ярной и сокращенной ионной формах.	
—————————————————————————————————————	n?	

4. ПРОЧНОСТЬ И РАЗРУШЕНИЕ КОМПЛЕКСНЫХ ИОНОВ

а) Получить в пробирке $[Ag(NH_3)_2]Cl$, как это было сделано в опыте 1. Написать уравнение реакции в молекулярной и сокращенной ионной формах.
Полученный раствор разлить в четыре пробирки и использовать в опытах 46 , 6 и 0 .
б) Налить в пробирку 1–2 мл раствора [Ag(NH ₃) ₂]Cl, полученного в опыте $4a$, и добавить туда кусочек цинка. Что наблюдается?
Записать уравнение реакции образования комплексного аммиаката цинка, учитывая, что координационное число ${\rm Zn}^{2+}$ равно четырем.
Объяснить, пользуясь таблицей констант нестойкости комплексных ионов, причину вытеснения цинком серебра из его аммиачного комплексного иона.
в) Налить в две пробирки одинаковые объемы раствора AgNO ₃ . В одну из них добавить раствор NaOH, в другую – KI. Записать наблюдения. Написать уравнения реакций в молекулярной и сокращенной ионной формах. + NaOH:
+ KI:
Эти реакции характерны для иона Ag^+ и могут быть использованы для его обнаружения. Раствор [$Ag(NH_3)_2$]C1, полученный в опыте 4a, налить по 1 мл в две пробирки. В одну пробирку добавить раствор NaOH, а в другую – раствор KI. Что происходит? + NaOH:
+ KI:
Написать уравнение диссоциации комплексного иона $[\mathrm{Ag}(\mathrm{NH_3})_2]^+$ и выражение константы его нестойкости.

Дать объяснение наблюдаемым явлениям, пользуясь уравнением комплексного иона и правилом произведения растворимости.	диссоциации
Написать уравнения реакций в молекулярной и сокращенной ионной фо	рмах.
г) Получить в пробирке осадок AgCl	
Отметить цвет раствора Написать урав в молекулярной и сокращенной ионной формах.	нение реакции
К полученному раствору комплексного соединения добавить раствор KI Наблюдения:	
Сравнить результаты с полученными в опыте 48. Объяснить.	
д) Налить в пробирку $1-2$ мл раствора $[Ag(NH_3)_2]Cl$, полученного и добавлять разбавленную HNO_3 до выпадения осадка $AgCl$.	
Написать уравнение реакции в молекулярной и сокращенной ионной фо	рмах.
Объяснить наблюдаемые явления, исходя из того, что константы несте $[Ag(NH_3)_2]^+$ и NH_4^+ соответственно равны $6.8\cdot 10^{-8}$ и $6.0\cdot 10^{-10}$.	ойкости ионов
е) Налить в две пробирки одинаковые объемы раствора $CuCl_2$. В одну из них добавить раствор NaOH, в другую – (NH ₄) ₂ S (или Na ₂ S). образующихся осадков.	Отметить цвет

Написать уравнения реакций в молекулярной и сокращенной и	онной формах.
Эти реакции можно использовать для открытия иона Cu^{2+} .	
Раствор [Cu(NH $_3$) $_4$](OH) $_2$, полученный в опыте 1, разделить пор	
В одну прилить раствор NaOH, а в другую – раствор (N	$H_4)_2S$ (или Na_2S). Что
наблюдается? Написать уравнения происходящих реакций.	
+NaOH:	
+(NH ₄) ₂ S (или Na ₂ S):	
Дать объяснение наблюдаемым явлениям, исходя из	
произведений растворимости $Cu(OH)_2$ и CuS и константы нестойкости	и иона $[Cu(NH_3)_4]^{2+}$.
5. ДИССОЦИАЦИЯ ДВОЙНОЙ СОЛИ	
Доказать наличие ионов NH_4^+ , Fe^{3+} и SO_4^{2-} в растворе желез	о-аммонийных квасцов
$NH_4Fe(SO_4)_2$, проделав для них характерные реакции.	
Указать признаки реакций. Написать уравнения реакций	й в молекулярной и
сокращенной ионной формах.	
NH ₄ ⁺ :	
Fe ³⁺ :	
Fe ³⁺ :	
Fe ³⁺ :	

В чем состоит сходство и различие между двойными солями и другими комплексным соединениями?
6. ВЛИЯНИЕ КОНЦЕНТРАЦИИ РАСТВОРА НА КОМПЛЕКСООБРАЗОВАНИЕ К нескольким каплям раствора CoCl ₂ (цвет) в пробирк прилить концентрированный раствор KSCN. Наблюдать изменения цвета раствор вследствие образования комплексной соли K ₂ [Co(SCN) ₄] Разбавить полученный раствор водой. Наблюдения:
Объяснить изменение его цвета
Написать уравнения реакций в молекулярной и сокращенной ионной формах.
Какое влияние оказывает концентрация раствора на комплексообразование?
7. ГИДРАТНАЯ ИЗОМЕРИЯ АКВАКОМПЛЕКСОВ Отметить цвет кристаллов CrCl ₃ ·6H ₂ O Прогреть в пробирк кристаллы до изменения окраски Дать объяснение
Написать уравнение реакции.

УГЛЕРОД, КРЕМНИЙ И ИХ СОЕДИНЕНИЯ

Углерод

1. АДСОРБЦИОННАЯ СПОСОБНОСТЬ ДРЕВЕСНОГО УГЛЯ

	а) Воду в колбе или стакане слегка окрасить фиолетовыми чернилами или фуксином.
	Внести в нее мелко измельченный древесный уголь и сильно взболтать.
	Затем отфильтровать. Как изменился цвет раствора?
	Дать объяснение
	б) В пробирку с несколькими каплями 0,01 H раствора нитрата или ацетата свинца (II)
внест	ги 1–2 капли 0,01 Н раствора иодида калия.
	Что наблюдается?
	Написать ионное уравнение реакции.
	В другую пробирку влить 1-2 мл того же раствора соли свинца, добавить в него мелко
изме	льченный активированный древесный уголь.
	Закрыть пробирку пробкой и сильно взболтать. Отфильтровать раствор.
	В фильтрат внести 1–2 капли 0,01 Н раствора иодида калия.
	Выпадает ли осадок в этом случае?
	Объяснить наблюдаемые явления.
	Чем обусловливается высокая адсорбционная способность древесного угля?

2. ВОССТАНОВИТЕЛЬНЫЕ СВОЙСТВА УГЛЯ

На листе бумаги перемешать небольшие, примерно одинаковые по массе порции оксида меди (II) и мелко измельченного древесного угля.

Смесь пересыпать в сухую пробирку, укрепленную горизонтально в штативе. Закрыть пробирку пробкой с изогнутой газоотводной трубкой, конец которой опустить в сосуд с известковой водой.

Пробирку сильно нагревать до прекращения выделения газа. Наблюдать за происходящими изменениями.

Дать пробирке остыть, рассмотреть ее содержимое, отметить его цвет.	
Написать уравнения реакций.	
3. ПОЛУЧЕНИЕ И СВОЙСТВА ОКСИДА УГЛЕРОДА (IV) а) В аппарат Киппа положить кусочки мрамора и налить раствор HCl (1:4). Наблюдать выделение газа. Можно ли использовать для этой цели раствор H_2SO_4 ? Почему?	
Написать уравнения реакций в молекулярной и сокращенной ионной формах.	
б) Выделяющийся из аппарата Киппа газ пропустить в пробирку с водой, подкрашенной нейтральным раствором лакмуса. Что наблюдается?	
Написать уравнения реакций, происходящих при получении ${\rm CO_2}$ и растворении его в воде.	
Полученный раствор CO ₂ в воде, подкрашенный лакмусом, прокипятить. Изменяется ли цвет?	
Выразить уравнениями равновесие, существующее в водном растворе оксида углерода (IV). Как сместить это равновесие?	
Каким способом можно собирать CO ₂ ? Объяснить.	

в) Взять для опыта два стакана (или банки). Один из них наполнить ${\rm CO_2}$ из аппарата
Киппа.
Проверить полноту наполнения сосуда газом с помощью горящей лучинки,
поднесенной к отверстию стакана.
В другой стакан бросить маленький кусочек ваты, смоченный спиртом, и поджечь его
горящей лучинкой.
Затем осторожно перелить CO_2 из первого стакана во второй. Что происходит?
Проверить с помощью горящей лучинки, остался ли ${\rm CO_2}$ в первом стакане Какой вывод можно сделать о плотности ${\rm CO_2}$?
г) В стакан, наполненный CO ₂ , внести подожженную на воздухе ленту магния, держа ее щипцами. Наблюдать за горением магния
К полученным продуктам прибавить немного разбавленного раствора HCl и взболтать. Все ли вещество растворяется?
Что представляют собой частички черного цвета?
Написать уравнения реакций.
д) В стакане, наполненном CO_2 , сжечь в железной ложечке красный фосфор, предварительно подожженный на воздухе.
Продукты горения фосфора растворить в воде и исследовать индикатором.
Индикатор —, цвет, среда, рН
Составить уравнения реакций.
Cocrability production.
Отметить роль оксида углерода (IV) в проведенных окислительно-восстановительных процессах
4. ОБРАЗОВАНИЕ СОЛЕЙ УГОЛЬНОЙ КИСЛОТЫ а) В пробирку с известковой водой пропускать в течение 2-3 мин быстрый ток СО ₂ . Какие происходят изменения?

Написать уравнения реакций в молекул	ярнои и сокраще	енной ионной формах.
_		
Назвать образующиеся соли. Написать	их графические	формулы:
Сделать вывод об их растворимости в в	оде	
Полученный раствор оставить для след	ующего опыта.	
б) Раствор, полученный в опыте <i>a</i>), разл Одну из них нагреть, в другую доб изменения? Написать уравнения происходящи 1:	бавить известко	
2:		
в) Пробирку, наполненную CO ₂ и закр разбавленным раствором NaOH, после чего резиновыми перчатками). Наблюдения:		
Объяснить происходящее явление. На сокращенной ионной формах.	писать уравнен	ие реакции в молекулярной и

После проведения данного опыта тщательно вымыть руки.

5. ГИДРОЛИЗ СОЛЕЙ УГОЛЬНОЙ КИСЛОТЫ

Испытать действие раствора соли на индикатор:			
1. Na ₂ CO ₃ ;			
2. NaHCO ₃ ;			
$3. K_2CO_3.$			
Индикатор –	, цвет	, среда	, pH
Написать уравнения ре	акции гидролиза в моле	кулярной и ионной	формах.
Какая соль в большей объяснение. Вывести и рассчи	степени подвергается и		или NaHCO ₃ ? Дать
$K_{\Gamma}(Na_2CO_3) = $			
$K_{\Gamma}(\text{NaHCO}_3) = \underline{\hspace{1cm}}$			
K ₁ (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1			
 а) Испытать отношени солей: 1. Na₂CO₃; 2. (CuOH)₂CO₃; 3. NaHCO₃; 4. CaCO₃. 	йСТВА СОЛЕЙ УГОЛЬ е к воде и к растворам акции в молекулярной и ые явления.	НС1 и СН₃СООН (
 б) Испытать отношение 1. Na₂CO₃; 2. (CuOH)₂CO₃; 3. NaHCO₃; 4. CaCO₃. 	е к нагреванию одной из	следующих солей:	

Для этого небольшую порцию соли прокалить в пробирке с газоотводной трубкой		
(опущенной в известковую воду) (см. рис. в опыте 3).		
Наблюдать за происходящим		
После того как пробирка остынет, растворить содержимое в воде и испытать		
индикатором. Индикатор –, цвет, среда, pH		
Какое соединение осталось в пробирке?		
Написать уравнения реакций.		
Сделать вывод о термической устойчивости солей угольной кислоты.		
Кремний и его соединения 7. ПОЛУЧЕНИЕ АМОРФНОГО КРЕМНИЯ И СИЛАНОВ		
(Опыт проводить в вытяжном шкафу при опущенном стекле!)		
Насыпать в пробирку на 1/5 ее объема смесь сухого порошка магния и тонко		
измельченного чистого сухого песка (в отношении масс 3:2).		
Пробирку укрепить в лапке штатива вертикально. (Надеть защитные очки!)		
Сначала прогреть всю смесь, а затем сильно нагревать дно пробирки до тех пор, пока		
смесь не раскалится.		
После этого горелку отставить, так как реакция протекает с выделением большого		
количества теплоты.		
Составить уравнения реакций, имея в виду, что кроме кремния и оксида магния		
получается также немного силицида магния ${ m Mg}_2{ m Si}$. Уравнять методом электронного баланса.		
После охлаждения пробирку с продуктами реакции разбить в ступке и полученную массу бросать небольшими порциями в стакан с разбавленной (1:1) соляной кислотой. Какие продукты смеси взаимодействуют с HC1?		
Написать уравнения реакций взаимодействия оксида и силицида магния с раствором		
соляной кислоты. Уравнять методом электронного баланса.		

Оценить восстановительные свойства образующего силана, имея в виду, что выделяющийся белый дым ${ m SiO_2}$ – продукт горения силана. После окончания реакции слить жидкость с осадка аморфного кремния, промыть
осадок водой, отфильтровать и высушить.
Отметить его цвет
Сделать вывод об отношении кремния к разбавленному раствору HCl.
Сохранить порошок кремния для следующего опыта.
8. ПОЛУЧЕНИЕ КРЕМНИЕВОЙ КИСЛОТЫ
а) Получение гидрогеля кремниевой кислоты. К 5 мл концентрированного раствора
силиката натрия прибавить 2–2,5 мл разбавленного раствора соляной кислоты (1:1) и хорошо перемешать жидкость стеклянной палочкой. Наблюдения:
Написать уравнение реакции в молекулярной и сокращенной ионной формах.
б) Получение гидрозоля кремниевой кислоты. К 3–5 мл раствора силиката натрия прибавить немного концентрированной HCl. Наблюдения:
Нагреть его до кипения. Что наблюдается?
Дать объяснения.
в) Вытеснение кремниевой кислоты из ее солей. В раствор силиката натрия пропустить ток ${\rm CO_2}$ из аппарата Киппа.
Наблюдения:
Написать уравнение реакции в молекулярной и сокращенной ионной формах.
Какая из кислот — H_2SiO_3 или H_2CO_3 — является более слабым электролитом?

	9. ГИДРОЛИЗ СОЛЕИ КРЕМНИЕВОИ КИСЛОТЫ а) Испытать индикатором раствор силиката натрия. Индикатор –		
	а) испытать индикатором раствор силиката натрия. Индикатор –, cpeда, pH		
	Написать уравнения реакций гидролиза в молекулярной и ионной формах.		
2-3 мл	б) К 1–2 мл концентрированного раствора силиката натрия прилить при помешивании насыщенного раствора хлорида аммония. Наблюдать образование осадка и газа. ать уравнения гидролиза в молекулярной и ионной формах.		
стекло Избыт <i>очки!)</i>	10. ВЫЩЕЛАЧИВАНИЕ СТЕКЛА Кусочек стеклянной трубки сильно нагреть в пламени горелки (до момента, когда «потечет») и быстро опустить в фарфоровую ступку с водой. Трубка лопается. ок воды слить, а кусочки стекла перетереть в мелкий порошок. (Надеть защитные Затем в ступку добавить несколько капель раствора фенолфталеина. Что наблюдается?		
	стов с водой.		

олово, свинец и их соединения

Соединения свинца ядовиты, поэтому после проведения опытов с соединениями свинца необходимо тщательно вымыть руки водой с мылом.

1. ПОЛУЧЕНИЕ	Е ОЛОВА
Пользуясь данными таблицы стандартныметалл, способный восстановить ионы Sn^{2+} из раст $\mathrm{E}^{\mathrm{o}}(\mathrm{Sn}^{2+}/\mathrm{Sn}) = \mathrm{B}, \mathrm{E}^{\mathrm{o}}(\mathrm{Проделать} \ \mathrm{соответствующий} \ \mathrm{опыт}, \ \mathrm{исполметаллов} \ \mathrm{и} \ \mathrm{растворимую} \ \mathrm{соль} \ \mathrm{олова}. \ \mathrm{Указать} \ \mathrm{при} \ \mathrm{в} \ \mathrm{молекулярной} \ \mathrm{u} \ \mathrm{uoнной} \ \mathrm{формаx}.$	гвора его соли.) = В. взуя один из имеющихся в лаборатории
2. ВЗАИМОДЕЙСТВИЕ ОЛОВА И (Работу проводить в вы В две пробирки поместить по 2 кусочка ол преподавателем кислотами сначала при комнатной 1. разбавленным раствором HCl, концентри 2. разбавленным раствором HNO ₃ и концент 3. концентрированной HCl и разбавленным 4. концентрированной HNO ₃ и разбавленны Наблюдать происходящие процессы, указат	<i>тяжсном шкафу.</i>) пова (свинца) и подействовать указанными й температуре, а затем при нагревании: рованной H_2SO_4 ; грированной HCl ; раствором H_2SO_4 ; м раствором HNO_3 .
Составить уравнения реакций, учитыва разбавленной HNO ₃ (на холоде) в растворе образу концентрированной H ₂ SO ₄ продукт реакции электронного баланса.	ется соль аммония, а при взаимодействии с

Объяснить результаты опыта, используя данные таблиц растворимости солей и электрохимического ряда напряжений.
3. ВЗАИМОДЕЙСТВИЕ ОЛОВА И СВИНЦА С ЩЕЛОЧАМИ Поместить в пробирку 2–3 кусочка олова (свинца) и прилить концентрированный раствор щелочи. Наблюдать происходящие изменения.
Как доказать, что выделяющийся газ – водород?
Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом.
4. ОБРАЗОВАНИЕ ГИДРИДА ОЛОВА Налить в фарфоровую чашку немного раствора SnCl ₄ , добавить концентрированную HCl и бросить туда же кусочек металлического цинка. Перемешать содержимое чашки пробиркой, наполненной наполовину водой (Для чего?
Наблюдать на поверхности пробирки бегающие огоньки васильково-синего цвета, образующиеся при сгорании SnH ₄ . Написать уравнение реакции образования SnH ₄ . Уравнять методом электронного баланса.
Какова роль цинка ?

Сравнить восстановительные свойства SnH ₄ и CH ₄ .	
5. ПОЛУЧЕНИЕ И СВОЙСТВА ГИДРОКО	
У. ПОЛУ ЧЕНИЕ И СВОИСТВА ГИДГОКО Из имеющихся в лаборатории реактивов получить г	
и характер осадка.	indpokend chopa (11). Otherwise deci-
Написать уравнение реакции в молекулярной и ионн	ой формах.
Избегать избытка щелочи. Почему?	
В каком порядке лучше сливать эти растворы? Объя	снить.
2 kakon nopagae ny mie embara om paeraopai. Goda	······
Испытать действие на гидроксид олова (II) кислот	ы и щелочи. Написать уравнения
реакций в молекулярной и сокращенной ионной формах.	
Какие свойства проявляет гидроксид олова (II)?	
6. ОЛОВЯННЫЕ КИСЛОТЫ И ИХ	СРОЙСТР А
0. ОЛОВЯППЫЕ КИСЛОТЫ И ИХ (Опыт б проводить в вытяжном	
а) К раствору хлорида олова (IV) добавлять по ка	1.0
образования осадка α-оловянной кислоты.	assum bodiisiii puotsop ummiunu do
Отметить цвет и вид осадка	
Написать уравнение реакции в молекулярной и ионн	
паписать уравнение реакции в молекулирной и ион	
Определить опытным путем отношение его к	кислотам и щелочам. Написать
уравнения реакций в молекулярной и сокращенной ионной	формах.

б) Кусочек олова облить в фарфоровой ч	чашке концентрированным раствором HNO ₃ и
нагреть до кипения.	
Наблюдать образование осадка β-оловян	ной кислоты.
Отметить цвет и вид осадка.	
После охлаждения содержимое чаш	іки разбавить водой и промыть осадок
декантацией.	
Испытать отношение β-оловянной кис	слоты к концентрированным растворам НСІ
и КОН.	
Записать наблюдения. Написать уравне	ния реакций в молекулярной и сокращенной
ионной формах.	
+HCl:	+КОН:
	_
Каково отличие в свойствах α- и β-оловя	нных кислот? Чем вызваны эти отличия?
,	
7. ГИДРОЛИЗ ХЛО	РИДА ОЛОВА (II)
Несколько кристалликов $SnCl_2 \cdot H_2O$ ра	астворить в возможно малом объеме воды,
прибавляя ее по каплям.	
Определить с помощью индикаторной	бумажки, подвергается ли соль гидролизу.
Индикатор –, цвет	, среда, рН
Полученный концентрированный раство	
Как влияет разбавление на степень гидро	олиза соли?
1	
Написать уравнение реакции гидролиза.	
I ступень:	II ступень:

Доказать опытным путем, что реакция гидролиза является обратимой. Как можно сместить равновесие гидролиза?
Объяснить механизм происходящих процессов
8. ВОССТАНОВИТЕЛЬНЫЕ СВОЙСТВА Sn ²⁺
Получить раствор гидроксостанната (II) натрия и добавить к нему небольшой объем растворимой соли висмута.
Что наблюдается? Составить уравнения реакций, имея в виду, что сначала образуется осадок гидроксида висмута (III), а затем мелко раздробленный металлический висмут. Обменную реакцик
написать в молекулярной и сокращенной ионной формах, в окислительно-восстановительной подобрать коэффициенты электронно-ионным методом.
Привести электродные потенциалы окислителя и восстановителя в данной реакции.
привести электродные потенциалы окнелители и восстановители в даннои реакции.
Какие свойства проявляет гидроксостаннат (II)?
9. ПОЛУЧЕНИЕ СУЛЬФИДОВ ОЛОВА
Налить в две пробирки небольшой объем раствора соли олова: 1. хлорид олова (II); 2. хлорид олова (IV).

аммония, а в другой – сероводородную воду.

Получить сульфид олова, используя в качестве осадителя в одной пробирке сульфид

Отметить цвет и характер полученного сульфида.	
Написать уравнения реакций в молекулярной и сокращенной ионной формах.	
Оценить полноту осаждения в том и другом случае.	
Объяснить наблюдаемые явления.	
Испытать отношение сульфида олова к раствору HCl, написать уравнения реакций в	
молекулярной и сокращенной ионной формах	
10. ПОЛУЧЕНИЕ И СВОЙСТВА ГИДРОКСИДА СВИНЦА (II) Из имеющейся в лаборатории растворимой соли свинца (II) получить его гидроксид. Отметить цвет и характер осадка	
Разделить осадок на две пробирки. В одну из них прибавить раствор HNO ₃ , в другую – избыток щелочи. Отметить изменения в пробирках. HNO ₃ :	
КОН:	
Написать уравнения реакций в молекулярной и сокращенной ионной формах.	
Какими свойствами обладает гидроксид свинца (II)?	

11. ОБНАРУЖЕНИЕ ИОНОВ РЬ²⁺ В РАСТВОРЕ

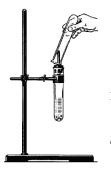
С помощью реакций обмена получить хлорид, сульфат, иодид, сульфид и хромат свинца (II).

1:		2:
3:		4:
5:		
	Какая из солей свинца наименее	е растворима? Привести соответствующие данные.
HNO ₃ .	(Опыт б пробирку крупин а) Внести в пробирку крупин	-

HCl.	б) Прокипятить в пробирке небольшую порцию PbO ₂ с избытком концентрированной
	Наблюдения:
балан	Написать уравнение реакции. Подобрать коэффициенты методом электронного ca.
	БОР, АЛЮМИНИЙ И ИХ СОЕДИНЕНИЯ
прили	1. ОРТОБОРНАЯ КИСЛОТА: ЕЕ ПОЛУЧЕНИЕ И СВОЙСТВА а) В пробирку с насыщенным раствором тетрабората натрия (буры) осторожно ть концентрированной H_2SO_4 . Охладить пробирку со смесью под краном с холодной водой. Наблюдения:
	Написать уравнение реакции в молекулярной и сокращенной ионной формах.
	Объяснить, почему H_2SO_4 вытесняет ортоборную кислоту
	Можно ли взять для этой реакции соляную кислоту? Почему?
	б) Сравнить растворимость ортоборной кислоты в воде на холоде и при нагревании. Вывод записать.
	в) Несколько кристаллов ортоборной кислоты растворить в воде и испытать раствор астором. Индикатор —, цвет, среда,
	Привести справочные данные по которым можно сделать вывод о силе ортоборной ты

	Написать уравнения ступенчатой диссоци	ации ортоборной кислоты.
I ст.:	.:	II ст.:
III ca	et.:	
	По какой ступени в большей степени дисс	оциирует ортоборная кислота? Почему?
пробиј		ислоты и 1 г хлорида натрия и поместить ее в
	Укрепить пробирку вертикально в лапке п Предположить, какой газ выделяется в рез	-
	Обнаружить выделяющийся газ химическ	им путем. Как?
	Написать уравнение реакции.	
	Почему в данном случае ортоборная кисле	ота вытесняет хлороводород?
	•	ь вывод, какие кислоты и при каких условиях кислоты могут быть вытеснены ортоборной
ленты	д) Несколько кристаллов ортоборной кисы (или порошка) магния. Наблюдения:	лоты растворить в воде и опустить кусочек
	Написать уравнение реакции, учитывая, ч	то получается метаборат магния.
	Составить структурную формулу метабор	ата магния.

в порошок H_3BO_3 и вместе с прилипшими частицами последней вновь внести его в пламя горелки у края его внешнего конуса. Наблюдать изменение цвета пламени горелки.
2. СВОЙСТВА СОЛЕЙ БОРНЫХ КИСЛОТ а) Испытать раствор тетрабората натрия (буры) индикатором. Индикатор –
Написать уравнение реакции гидролиза тетрабората натрия.
б) Захватить в ушко нихромовой проволоки немного кристаллов тетрабората натрия и ввести в пламя горелки. Наблюдать образование прозрачного стекловидного перла. Написать уравнение реакции, происходящей с тетраборатом натрия при нагревании.
в) Полученный перл тетрабората натрия на 5 сек. опустить в пробирку с концентрированным раствором соли кобальта и снова прокалить. Отметить цвет полученного перла.
Какое соединение придает ему характерную окраску?
г) Повторить опыт б . Опустить полученный перл тетрабората натрия на 5 сек. в концентрированный раствор соли хрома (III) и снова прокалить. Отметить цвет полученного перла.
Какое соединение придает перлу отмеченную в опыте окраску
3. ВЗАИМОДЕЙСТВИЕ АЛЮМИНИЯ С КИСЛОРОДОМ


(Опыт проводить в вытяжном шкафу.)

Пластинку алюминия очистить наждачной бумагой.

На зачищенную поверхность металла нанести каплю раствора нитрата ртути (I) $Hg_2(NO_3)_2$ или хлорида ртути (II) $HgCl_2$. (Осторожно, эти растворы ядовиты!)

Наблюдать изменение внешнего вида пластинки под каплей раствора. Почему оно происходит?	
Затем каплю раствора смыть в специальный сосуд, серебристое пятно слегка протереть ватой или фильтровальной бумагой и оставить металл на воздухе под тягой на 10—15 минут. Наблюдать окисление алюминия. Каков внешний вид образующегося продукта реакции?	
Написать уравнения происходивших реакций.	
4. ВЗАИМОДЕЙСТВИЕ АЛЮМИНИЯ С ВОДОЙ Положить в пробирку немного опилок алюминия и взболтать с 3–5 мл воды. Происходит ли реакция? Дать объяснение.	
Прокипятить опилки с 2–3 мл разбавленного раствора щелочи. Затем слить жидкость, несколько раз промыть опилки водой для удаления щелочи и оставить их стоять в воде. Через 10 минут наблюдать изменения, происходящие в пробирке.	
Доказать опытным путем, какой газ выделяется.	
Написать уравнение реакции алюминия с водой. Подобрать коэффициенты электронно-ионным методом.	
При каком условии возможно взаимодействие алюминия с водой?	

5. ВЗАИМОДЕЙСТВИЕ АЛЮМИНИЯ СО ЩЕЛОЧАМИ

Собрать прибор по рисунку.

В пробирку прибора насыпать немного стружек алюминия и прилить 30%-й раствор гидроксида натрия.

Доказать опытным путем, что выделяющийся газ — водород. (Перед поджиганием газа провести проверку H_2 на чистоту.)

Написать уравнение реакции, учитывая, что в реакции принимает участие вода. Подобрать коэффициенты электронно-ионным методом. В продукте реакции считать координационное число алюминия равным 6.
Дать название образующемуся гидроксокомплексу
6. ВЗАИМОДЕЙСТВИЕ АЛЮМИНИЯ С КИСЛОТАМИ (Опыты б и в проводить в вытяжном шкафу.) а) Ознакомиться с положением алюминия в электрохимическом ряду напряжений металлов и с величиной стандартного электродного потенциала алюминия. Сделать вывод о возможности взаимодействия алюминия с разбавленными растворами НС1 и Н ₂ SO ₄ . Привести электродные потенциалы окислителя и восстановителя в данной реакции.
Провести опыт, для чего в две пробирки положить немного стружек алюминия и добавить в одну пробирку 2 H раствор HCl, в другую – 2 H раствор H_2SO_4 .

Подогреть пробирки с разбавленными кислотами. Что наблюдается?	
Какой газ выделяется в обоих случаях на холоде и при нагревании?	
Как определить выделяющийся газообразный продукт реакции?	
Написать уравнения реакций в молекулярной и сокращенной ионной формах.	
 б) В пробирку опустить немного стружек алюминия и добавить указанную кислоту 1. концентрированную H₂SO₄; 2. разбавленную HNO₃; 3. концентрированную HNO₃. Осторожно нагреть пробирку. Наблюдения: 	r:
Написать уравнение реакции. Подобрать коэффициенты электронно-ионным метод	ĮΟM.
в) Кусочек алюминия (предварительно очищенный наждачной бумагой) опуститоробирку. Прилить немного концентрированной HNO ₃ . Происходит ли растворение алюмин концентрированной HNO ₃ на холоде? Почему?	ия в
Через несколько минут вылить кислоту из пробирки осторожно, не встряхи металла (почему?)	й.

Сравнить активность взаимодействия алюминия с HCl и $\rm H_2SO_4$ на холоде.

Дать объяснение, что происходит с поверхностью алюминия при действии на нее холодной концентрированной HNO_3 .
Написать уравнение реакции пассивации. Подобрать коэффициенты электронно- ионным методом.
Затем слить HCl, промыть металл водой и добавить снова концентрированную HNO ₃ . Осторожно нагреть пробирку. Какой газ выделяется?
На основании проведенных опытов сделать вывод, в каких кислотах и при каких условиях можно растворить алюминий
7. ПОЛУЧЕНИЕ ГИДРОКСИДА АЛЮМИНИЯ И ИССЛЕДОВАНИЕ ЕГО СВОЙСТВ а) К раствору соли алюминия в пробирке добавлять по каплям разбавленный раствор (1–2 %) гидроксида натрия до образования осадка. Каков цвет и характер осадка?
Написать уравнение реакции в молекулярной и сокращенной ионной формах.
б) Разделить осадок на две пробирки и исследовать его отношение к раствору HCl и к раствору NaOH. Указать наблюдения и написать уравнения реакций в молекулярной и сокращенной ионной формах.

+HCl:	+NaOH:
Сделать вывод о химическом характере	гидроксида алюминия.
Изобразить схему равновесия, уста гидроксида алюминия согласно протолитическ	навливающегося в насыщенном растворе ой теории.
Как смещается это равновесие при добав	влении избытка щелочи, избытка кислоты?
в) Получить осадок гидроксида алюмини Промыть осадок на фильтре водой. Пропустить через фильтр с осадком органического красителя, например фуксина. Сравнить окраску исходного раствора кр	и слабоокрашенный раствор какого-нибудь
На какие свойства гидроксида алюминия	н указывает этот опыт?
8. ГИДРОЛИЗ СОЛ	ІЕЙ АЛЮМИНИЯ
(Опыт б проводить с	з вытяжном шкафу.) ния индикаторной бумажкой. Индикатор –
	, среда, рН,
$[H^+] = \underline{\hspace{1cm}}$	·
Объяснить изменение цвета и сделат основания.	ь вывод о силе гидроксида алюминия как

Написать уравнения реакций ступ	пенчатого гидролиза сульфата алюминия в
молекулярной и ионной формах.	
I ст.	ІІ ст.
Объяснить, почему гидролиз данной с	оли не идет до конца.
б) К раствору сульфата алюминия при	барит, растрор суш фила цатрия
Наблюдения:	
	промыть на фильтре водой и разделить на две
части. К одной части добавить разбавле	нную HCl, к другой – раствор NaOH. Что
происходит?	initial trees, it Approximately the trees to
+HCl:	+NaOH:
Какой вывод о составе полученного о	садка можно сделать на основании этих опытов?
Написать уравнения реакций, происхо сульфида аммония в водной среде, в молекух	одящих между растворами сульфата алюминия и
сульфида аммония в водной среде, в молеку.	пярной и сокращенной ионной формах.
	_
	ых реакциях обусловливает течение гидролиза до
конца? Почему?	

На основании опыта сделать вывод, можно ли получить сульфид и карбонат алюминия в результате обменных реакций в водных растворах.
в) К раствору сульфата алюминия добавить раствор ацетата натрия. Отмечаются ли внешние признаки протекания химической реакции?
Прокипятить раствор. Что происходит?
Объяснить, какую роль в протекании реакции сыграло кипячение раствора.
Написать уравнения реакций между растворами сульфата алюминия и ацетата натрия в молекулярной и сокращенной ионной формах.
Какое вещество выпадает в осадок?
г) Получить раствор гексагидроксоалюмината натрия.
Затем прилить концентрированный раствор NH ₄ CI и нагреть. Что наблюдается?
Каков вид и состав осадка?
Определить по запаху (осторожно), какой газ выделяется.
Написать уравнения реакций в молекулярной и сокращенной ионной формах.

S-ЭЛЕМЕНТЫ

Щелочные металлы и их соединения

При работе со щелочными металлами соблюдать осторожность! Не брать щелочные металлы руками! Не выбрасывайте остатки щелочных металлов в мусоросборники!

1. ВЗАИМОДЕЙСТВИЕ ЛИТИЯ И НАТРИЯ С КИСЛОРОДОМ ВОЗДУХА

	(Работу проводить за стеклом вытяжного шкафа.)
a) В укрепленную на деревянной ручке маленькую железную ложку положить кусочек
металли	ического лития и внести ложку в пламя спиртовки.
F	Наблюдать плавление металла, а затем через некоторое время его сгорание.
	Отметить цвет пламени.
	Написать уравнение реакции; отметить название и цвет продуктов реакции.
	Растворить полученное соединение в небольшом объеме воды и испытать раствор
	гором. Индикатор –
pH	
	Сделать вывод о химическом характере полученного соединения. Написать уравнения
реакций	Á.
б	б) Вынуть пинцетом из банки с маслом брусок металлического натрия, положить на
	овальную бумагу и отрезать от него ножом кусочек величиной с горошину.
	Корошо осушить его поверхность фильтровальной бумагой и поместить в
	овый тигель.
	ем горелки до воспламенения натрия, после чего отставить горелку.
	Отметить цвет продуктов реакции
K	Сакое соединение получилось в результате реакции?
F	Написать его графическую формулу.
F	Написать уравнение реакции горения натрия в воздухе.

12.0 OFF	Доказать образование пероксид-иона, для чего добавить в тигель по несколько капель
раств	ора KI и 2 H раствора H_2SO_4 и одну-две капли крахмального клейстера. Наблюдения:
	О чем свидетельствуют эти изменения?
	Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом.
	2. ВЗАИМОДЕЙСТВИЕ ЩЕЛОЧНЫХ МЕТАЛЛОВ С ВОДОЙ
	(Работу проводить за стеклом вытяжного шкафа.)
	Взять три кристаллизатора с водой.
	Отрезать по маленькому кусочку металла:
	1. лития;
	2. натрия;
	3. калия.
	Обсушив их фильтровальной бумагой, удалить продукты окисления, бросить каждый
в отде	ельный кристаллизатор.
	Наблюдать за ходом реакции через стекло вытяжного шкафа. Защита стеклом
необх	кодима ввиду разбрызгивания раствора, происходящего в результате реакции.
	Отметить, какой из металлов наиболее активно взаимодействует с водой.
-	
	Какой газ выделяется ?
	Испытать индикатором полученные растворы. Индикатор –,
цвет	, среда, рН
	Написать уравнения реакций.

3. ГИДРОЛИЗ СОЛЕЙ ЩЕЛОЧНЫХ МЕТАЛЛОВ

4. ОКРАШИВАНИЕ ПЛАМЕНИ СОЛЯМИ ЩЕЛОЧНЫХ И ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ

Очищенную путем промывания в HCl и прокаливания нихромовую проволоку внести в раствор соли одного из щелочных или щелочноземельных металлов, а затем в несветящееся пламя газовой горелки. Повторить действия с солями остальных металлов.

Наблюдать окрашивание пламени. Записать цвет пламени.

Проволоку после каждой соли промывать HCl и прокаливать до полного исчезновения окрашивания пламени.

Металл	Цвет пламени	Металл	Цвет пламени
литий		кальций	
натрий		стронций	
калий		барий	
рубидий			

5. ВЗАИМОДЕЙСТВИЕ НАТРИЯ С РАСТВОРОМ СУЛЬФАТА МЕДИ (II)

(Работу проводить за стеклом вытяжного шкафа.)

Налить в химический стакан емкостью 100-200 мл до половины раствор CuSO₄.

Вынуть пинцетом из банки с керосином кусок металлического натрия, положить на фильтровальную бумагу и отрезать от него ножом кусочек величиной со спичечную головку.

Хорошо осушить его поверхность фильтровальной бумагой и поместить в стаканчик.

Наблюдать последовательность изменений, происходящих с реакционной смесью.	
Наблюдения:	
Записать уравнения протекающих реакций.	
Можно ли с помощью щелочного металла вытеснить менее активный металл из его	
соли? Почему?	
С чем натрий взаимодействует более активно – с водой или с раствором CuSO ₄ ?	
Объяснить.	
6. ВЗАИМОДЕЙСТВИЕ НАТРИЯ С СЕРОЙ	
(Опыт проводить в вытяжном шкафу.)	
Вынуть пинцетом из банки с маслом брусок металлического натрия, положить на	
фильтровальную бумагу и отрезать от него ножом кусочек величиной с горошину. Удалить	
продукты окисления. В фарфоровую чашку насыпать горкой немного кристаллической серы.	
Поместить в центр горки кусочек натрия и придавить его стеклянной палочкой.	
Наблюдения:	
Написать уравнение реакции. Уравнять методом электронного баланса.	
Продукт взаимодействия осторожно растереть в ступке.	
Продукт взаимодеиствия осторожно растереть в ступке. Как доказать, что образовался сульфид натрия?	

Написать уравнения реакций в молекулярной и сокращенной ионной формах.
Магний и его соединения
7. ВОССТАНОВИТЕЛЬНЫЕ СВОЙСТВА МЕТАЛЛИЧЕСКОГО МАГНИЯ а) Взаимодействие магния с водой
Кусочек ленты магния, очищенный наждачной бумагой, опустить в пробирку
дистиллированной водой.
Можно ли обнаружить внешние признаки протекания химической реакции на холоде
Почему?
Закрепить пробирку в штативе и нагреть небольшим пламенем горелки. Что наблюдается?
После остывания пробирки испытать полученный раствор индикатором. Индикатор, цвет, среда, рН
[H ⁺] =
Написать уравнение реакции и отметить, при каких условиях она протекает.
б) Взаимодействие магния с кислотами Ознакомиться с величиной стандартного электродного потенциала магния и сделат вывод о возможности его взаимодействия с разбавленными растворами HCl и H ₂ SO ₄ .
Проверить сделанные предположения опытным путем. Написать уравнения реакций Указать признак реакции и метод определения выделяющегося газа.
8. ПОЛУЧЕНИЕ И СВОЙСТВА ОКСИДА И ГИДРОКСИДА МАГНИЯ
 а) Получение и свойства оксида магния Сжечь кусочек ленты магния над фарфоровой чашкой и собрать продукты горения.
Каков цвет полученного соединения?

Внести порошок оксида магния в проб размешать стеклянной палочкой и добавит фенолфталеина. Что наблюдается?	
Написать уравнения реакций, учитывая, реакция взаимодействия магния с азотом воздух	, что в данных условиях протекает побочная ха.
аммиака.	ора какой-нибудь соли магния. вор гидроксида натрия, в другую – раствор хся осадков. Обратить внимание на объем
Написать уравнения реакций в молекуляр	рной и ионной формах.
Дать объяснение, почему объем осадка не	еодинаков в обеих пробирках.
Отметить, концентрация какого иона уве иона влияет на концентрацию иона ОН ⁻ в раств	еличивается в растворе. Как накопление этого оре аммиака?

Пробирку с осадком сохранить для следующего опыта.

в) Свойства гидроксида магния
Получить осадок гидроксида магния. Разделить его на три пробирки.
В одну пробирку с осадком гидроксида магния добавить раствор хлорида аммония.
Что наблюдается?
Написать уравнения реакций в молекулярной и сокращенной ионной формах и
объяснить причину растворения осадка.
Можно ли растворить осадок гидроксида магния добавлением раствора хлорида натрия? Почему?
Две другие пробирки с гидроксидом магния использовать для установления характера $Mg(OH)_2$. Испытать отношение осадка к раствору HCl и к избытку раствора NaOH. Написать
уравнение реакции.
HC1:
NaOH:
Сделать вывод о химическом характере гидроксида магния.
9. СВОЙСТВА СОЛЕЙ МАГНИЯ
а) Получение и свойства карбоната гидроксомагния
К раствору сульфата магния добавить раствор карбоната натрия до выпадения осадка. Каков его цвет?
Написать уравнение реакции получения карбоната гидроксомагния в молекулярной и ионной формах, учитывая участие в реакции воды.
Почему не образуется карбонат магния?
Добавить в пробирку раствор хлорида аммония. Что наблюдается?

Объяснить причину растворения осадка в растворе хлорида аммония, используя понятие о смещении химического равновесия. Привести справочные данные.

	Написать уравнение реакции в молекулярной и ионной форме.	
]	Написать уравнения реакций в молекулярной и сокращенной ионной формах.	
Na ₂ CO	б) Получение гидрокарбоната магния К очень сильно разбавленному раствору какой-нибудь соли магния добавить раствор 3 до выпадения мути. Наблюдения:	
]	Какое вещество выпадает в осадок?	
]	Раствор с осадком насытить CO_2 из аппарата Киппа до растворения осадка.	
]	Написать уравнения реакций в молекулярной и сокращенной ионной формах.	
(Обосновать возможность протекания реакции	
ную во	Щелочноземельные металлы и их соединения 10. ВОССТАНОВИТЕЛЬНЫЕ СВОЙСТВА КАЛЬЦИЯ Взаимодействие кальция с водой. В пробирку на 1/3 объема налить дистиллированоду и опустить кусочек кальция величиной со спичечную головку. Наблюдения:	
]	Почему происходит помутнение раствора?	
]	Внести в раствор 1–2 капли раствора фенолфталеина. Что наблюдается?	

Сделайте вывод о продукте реакции, оставшемся в растворе
Написать уравнение реакции взаимодействия кальция с водой.
Будет ли аналогичная реакция протекать, если вместо кальция использовать стронции барий?
11. ПОЛУЧЕНИЕ ГИДРОКСИДОВ ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ а) К 1 мл растворов CaCl ₂ , SrCl ₂ и BaCl ₂ , взятых в отдельных пробирках, добавить по 1 мл разбавленного раствора NaOH, не содержащего примеси карбоната. Обратить внимание на объем выпавшего осадка в каждой пробирке.
Написать уравнения реакций.
Объяснить разницу в объеме осадка
б) Повторить опыт, взяв вместо NaOH водный раствор (2 H) аммиака, не содержащий примеси карбоната. Написать уравнения реакций в молекулярной и сокращенной ионной формах.
Сравнить полученные результаты с предыдущим опытом. Дать объяснение.

12. ПОЛУЧЕНИЕ И СВОЙСТВА СОЛЕЙ ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ

а) Получение и свойства карбонатов щелочноземельных металлов

Получить в отдельных пробирках карбонаты кальция, стронция и бария из растворов соответствующих солей.

Написать уравнения ревид и цвет осадков?	еакций в молекуля	ярной и сокра	ищенной ионной формах. Ка	аков
Осторожно нагреть со осадков.	одержимое пробир	оок. Обратить	ь внимание на изменение	вида
После охлаждения до происходит?	обавить во все	пробирки раз	збавленный раствор НС1.	Что
Написать уравнения ре	акций в молекуляр	рной и сокраш	енной ионной формах.	
б) Термическая диссо Получить CaCO ₃ . Како	-			
Написать уравнение ре	акции в молекуляр	оной и сокращ 	енной ионной формах.	
Осадок отфильтровать	•	-		
		-	ь ее индикатором. Индикат	-
	, среда	, pH	, [H ⁺] =	,
[OHT] =	2 21 101 111 11 11 11 11 11 11 11 11 11 11	onoverm p de	and an an i vi murati. II n mair	211112
5–10 мин сильно прокаливать	-	-	арфоровый тигель и в теч	тнис
_	=		водой и испытать индикатор	тоной
бумажкой. Индикатор –				
pH, [H ⁺] =				
Написать уравнения ре	акций.			

в) Получение сульфатов щелочноземельных металлов Получить в отдельных пробирках сульфаты кальция, стронция и бария из растворов соответствующих солей. Отметить цвет полученных осадков. Написать уравнения реакций. Испытать отношение осадков к разбавленным растворам HCl и HNO₃: $CaSO_4 + HCl$: $CaSO_4 + HNO_3$: $SrSO_4 + HCl$: $SrSO_4 + HNO_3$: $BaSO_4 + HCl$: $BaSO_4 + HNO_3$: Объяснить наблюдаемые явления. ______ г) Сравнительная растворимость сульфатов щелочноземельных металлов К находящимся в трех пробирках разбавленным растворам CaCl₂, SrCl₂ и BaCl₂ добавить понемногу насыщенный раствор CaSO₄ (гипсовой воды). Наблюдать различную скорость образования осадков. Какой сульфат выпадает в осадок наиболее медленно? В какой пробирке осадок не образуется? Написать уравнения реакций в молекулярной и сокращенной ионной формах. Подобным же образом добавить в три пробирки с растворами CaCl₂, SrCl₂ и BaCl₂

насыщенный раствор SrSO₄. Что наблюдается?

	Написать уравнения реакций.	
	Сделать вывод о сравнительной растворимости суль	фатов кальция, стронция и бария.
бария.	Выписать величины произведения растворимости Соответствуют ли эти величины сделанному выводу	
	13. ЖЕСТКОСТЬ ВОДЫ И ЕЕ УСТ а) В коническую колбу внести по несколько кристал Налить до половины колбы воды и взболтать в ней с Из аппарата Киппа пропускать углекислый газ до по Написать уравнения реакций в молекулярной и сокр	лов MgCO ₃ и CaCO ₃ . жесь этих двух солей. элного растворения солей.
	Полученную жесткую воду оставить для следующих	С ОПЫТОВ.
получ число	б) Взять четыре пробирки: в одну налить 5 мл дист полученную в предыдущем опыте жесткую воду (по В пробирку с дистиллированной водой добавлять ения устойчивой мыльной пены, встряхивая пробиркапель, необходимых для этого. То же самое проделать с одной из пробирок, где нах Обратить внимание на осадок, который получается то осадка?	5 мл). по каплям мыльный раствор до оку после каждой капли. Записать одится жесткая вода. на стенках пробирки. Каков состав
мыльн	Объяснить, почему для образования пены в жестко ого раствора	

, 10 0 1 1 0	й добавлять по каплям, все время взбалтывая, ощей мути. Написать уравнение реакции в
После этого опять добавить, как и в заметить число капель, требуемое для образова	первые две пробирки, мыльный раствор и ания пены.
лить, сколько капель мыльного раствора требу	ой прокипятить, охладить, после чего опредеется для образования пены. сопоставления полученных данных сделать
Пробирки	Число капель мыльного раствора
	до образования пены
С дистиллированной водой	
С жесткой водой без обработки	
С жесткой водой после прибавления известковой воды	
С жесткой водой после кипячения	
1. ПОЛУЧЕНИЕ И СВОЙС а) Насыпать в пробирку на высоту 1 см наклонно в штативе.	С ОЕДИНЕНИЯ ТВА ОКСИДА ХРОМА (III) м кристаллический (NH ₄) ₂ Cr ₂ O ₇ и закрепить ее рону от себя и от других работающих. Под
пробирку положить лист бумаги. Нагреть верхний слой соли до начала ре Наблюдения:	акции и затем нагревание прекратить.
Объяснить происходящее явление	

Написать уравнение реакции разложения дихр электронного баланса. Указать окислитель и восстановительного баланса.	_
	and a cross reposition.
б) На полученный порошок оксида хрома (III) под	ействовать:
1. водой и разбавленной H_2SO_4 ;	
2. водой и разбавленной HNO ₃ .	0.77
Растворяется ли оксид хрома (III) в воде и в разба	
H ₂ SO ₄ (HNO ₃):	
H ₂ O:	
Написать уравнения возможных реакций растворе	эння оконта упома (III)
паписать уравнения возможных реакции растворе	ения оксида хрома (111).
2. ПОЛУЧЕНИЕ И СВОЙСТВА ГИДРО	
а) В пробирку с раствором соли хрома (II	
гидроксида натрия до образования осадка гидрогосадка.	ксида хрома (III). Отметить цвет
Написать уравнения реакций в молекулярной и со	жрашенной ионной формах
Trainieur J publicinus peanaini b mosekysuspinon ii ee	pundemen nemen pepman
б) Разделить осадок на две пробирки.	
В одну из них добавить разбавленную соляную	о или серную кислоту, в лругую —
избыток щелочи. Указать признаки реакций и напи	
сокращенной ионной формах.	J1 J 1
кислота:	
	1
щелочь:	
	1
Varyany anayarnasını afrancarı (III	1/3
Какими свойствами обладает гидроксид хрома (III) со Продукт взаимодействия гидроксида хрома (III) со	
продукт вышлоденетый гидрокенда хрома (пп) с	о щело пло оставить для опыта 30.

3. ГИДРОЛИЗ СОЛЕЙ ХРОМА

	ый (слабоокрашенный) раство		
rтпдикатор —	, цвет	, среда	, p11
Объяснить изм	иенение цвета индикатора		
	· · · · · · · · · · · · · · · · · · ·		
Написать урав	нение реакции гидролиза.		
б) К раствору	соли хрома (III) добавить рас	створ олного из реак	стивов до образования
осадка:	соли хрома (пт) дооавить рас	створ одного из реаг	тивов до ооразования
1. сульфида на	трия;		
2. карбоната на	•		
Отметить цвет	и характер осадка.		
К одной полов щелочи. Отметить сокращенной ионной	садок отфильтровать и хорош вине осадка в пробирке добав наблюдения и написать у формах.	ить разбавленную Н уравнения реакций	Cl, к другой – раствор
NaOH:		L	
На основании	проделанных реакций предпо.	ложить, каков состав	с осадка.
	внения реакций взаимодейств молекулярной и сокращенной	1 ,	и сульфида аммония
		,	
в) Раствор гидј Наблюдения:	роксохромата (III), полученны	ій в опыте 2, прокип	ятить.

Объяснить образование осадка гидроксида хрома (III).	
Написать уравнения реакции в молекулярной и ионной формах.	
Указать, что сильнее гидролизуется: растворимая соль хрома (III) или гидроксохромат (III). Какое значение имело нагревание?	
4. ОКИСЛЕНИЕ И ВОССТАНОВЛЕНИЕ СОЕДИНЕНИЙ ХРОМА (III) а) К раствору соли хрома (III) добавлять раствор NaOH до растворения первоначально появившегося осадка. Написать уравнения реакций в молекулярной и сокращенной ионной формах.	
Полученный раствор разделить на две пробирки. В одну из них добавить 2–3 мл раствора NaOH и 2–3 мл бромной воды. В другую пробирку добавить 2–3 мл раствора NaOH и 2–3 мл 3%-го раствора H_2O_2 . Наблюдения:	
Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом.	
б) Раствор хлорида хрома (III) подкислить HCl и разделить на две пробирки. (Можно брать и другую соль хрома, но результат опыта будет менее нагляден.) Цвет исходного раствора	
Одну пробирку оставить для контроля, в другую поместить 2–3 кусочка цинка, добавить немного бензина и закрыть ее пробкой с газоотводной трубкой, конец которой опустить в воду. Наблюдения:	

Написать уравнения реакций образования восстановителя и восстановления хрома (III) без доступа кислорода. Подобрать коэффициенты электронно-ионным методом.
Объяснить, зачем наливается бензин, а отводная трубка опускается в воду.
Какую роль играет хлорид хрома (III) в этой реакции?
На основании проведенных опытов сделать вывод, какую роль могут играть соединения Сг (III) в окислительно-восстановительных реакциях и какова при этом роль среды.
5. ПОЛУЧЕНИЕ ОКСИДА ХРОМА (VI) И ЕГО СВОЙСТВА а) Насыпать в пробирку немного кристаллического К ₂ Сг ₂ О ₇ и осторожно добавить 2–3 мл концентрированной Н ₂ SO ₄ , охлаждая пробирку в стакане с холодной водой. Отметить цвет выпадающих кристаллов
Написать уравнение реакции.
Объяснить, почему необходим большой избыток H_2SO_4 .
б) Часть полученных кристаллов достать из пробирки стеклянной палочкой, поместить в фарфоровую чашку и осторожно облить из пипетки несколькими каплями спирта.

Наблюдения:
Написать уравнение реакции, учитывая, что образуется оксид хрома (III) и уксусный
альдегид (определяется по запаху). Подобрать коэффициенты электронно-ионным методом.
Какие свойства проявляет в этой реакции оксид хрома (VI)?
в) Несколько полученных в опыте a кристаллов оксида хрома (VI) растворить в 2–3 мл воды и добавить раствор KI.
Наблюдения:
Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом.
Доказать присутствие иода в растворе.
Сделать вывод о свойствах оксида хрома (VI)
6. УСЛОВИЯ СУЩЕСТВОВАНИЯ В РАСТВОРЕ ХРОМАТОВ
И ДИХРОМАТОВ
К 3–4 мл раствора хромата калия добавить раствор H_2SO_4 .
Наблюдать изменение окраски
Объяснить происходящее явление.

Написать уравнения реакций в молекулярной и сокращенной ионной формах.
К полученному раствору добавить раствор щелочи. Наблюдать изменение цвета раствора. Объяснить это изменение.
Написать уравнения реакций в молекулярной и сокращенной ионной формах.
Наличием каких ионов обусловлены переходы окраски раствора? Какое равновесие устанавливается в водных растворах хроматов и дихроматов Записать уравнение проведенной обратимой реакции.
Как влияет среда на сдвиг этого равновесия?
7. ПОЛУЧЕНИЕ СОЛЕЙ ХРОМОВЫХ КИСЛОТ а) В фарфоровом тигле или чашечке для выпаривания сплавить, нагревая на горелке 2 г карбоната калия и 1 г нитрата калия. Затем внести в расплав 1 г Cr ₂ O ₃ . Смесь хорошо перемешать железной проволокой и прокалить в течение 5–10 мин на сильном пламени горелки.
Наблюдения: Написать уравнения реакций. Подобрать коэффициенты методом электронного баланса.

По охлаждении полученный желтый сплав (хромат калия) растворить в воде. Раствор
подкислить H_2SO_4 для перевода K_2CrO_4 в менее растворимый $K_2Cr_2O_7$, упарить и оставить
кристаллизоваться.
Цвет выпадающих кристаллов
Написать уравнения реакции перевода хромата в дихромат в молекулярной, полной и
сокращенной ионной формах.
б) Налить в одну пробирку раствор K_2CrO_4 , а в другую $K_2Cr_2O_7$ и добавить в обе
пробирки раствор одной из солей:
$1. \text{ AgNO}_3;$
2. BaCl ₂ ;
3. $Pb(NO_3)_2$.
Наблюдения:
Учесть, что во всех предложенных реакциях образуется осадок хромата.
Объяснить это явление, принимая во внимание вывод из опыта 6 и произведение
растворимости хромата и дихромата соответствующего металла.
Написать уравнения реакций в молекулярной и сокращенной ионной формах.
·
8. ОКИСЛИТЕЛЬНЫЕ СВОЙСТВА СОЕДИНЕНИЙ XPOMA (VI)
а) К $2-3$ мл раствора $K_2Cr_2O_7$ прибавить немного разбавленной H_2SO_4 и
2–3 мл раствора одного из реактивов:
1. NaNO ₂ ;
2. KI;
3. SnCl ₂ .
4. Na ₂ SO ₃ .
Смесь, если необходимо, немного подогреть.
Наблюдения:

Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом.
б) К концентрированному раствору $K_2Cr_2O_7$ добавить концентрированную HCl. Нагреть до изменения окраски раствора.
Наблюдения:
Какой газ выделяется? (Нюхать осторожно!)
Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом.
в) К 2–3 мл раствора $K_2Cr_2O_7$ добавить раствор (NH_4) $_2S$ или Na_2S . Наблюдения:
Доказать, что полученный осадок – гидроксид хрома (III). Привести уравнения соответствующих реакций
Написать уравнение взаимодействия $K_2Cr_2O_7$ и $(NH_4)_2S$ (или Na_2S). Подобрать коэффициенты электронно-ионным методом.
Что является окислителем и восстановителем в данной реакции?

МАРГАНЕЦ И ЕГО СОЕДИНЕНИЯ

1. ПОЛУЧЕНИЕ ГИДРОКСИДА МАРГАНЦА (II) И ЕГО СВОЙСТВА
а) Получить гидроксид марганца (II) из соли Mn (II).
Отметить его цвет и характер.
Написать уравнение реакции в молекулярной и сокращенной ионной формах.
б) Часть жидкости с осадком отлить в другую пробирку и оставить стоять на воздухе. Наблюдения:
Объяснить изменение цвета осадка
Написать уравнение реакции. Уравнять методом электронного баланса.
в) Испытать отношение полученного в начале опыта осадка к разбавленной кислоте и избытку раствора щелочи. Написать уравнения реакций. HCl:
NaOH:
Какой вывод можно сделать о свойствах гидроксида марганца (II)?
г) К небольшому количеству осадка гидроксида Mn (II) добавить бромной воды. Наблюдения:
Какие свойства проявляет гидроксид Mn (II) в этой реакции?
Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом.

2. СВОЙСТВА СОЛЕЙ МАРГАНЦА (II)

a) К раствору соли Mn (II) прибавить раствор сульфида аммония (сульфида натрия).	
Наблюдения:	
Что происходит с осадком при стоянии	на воздухе?
Объяснить его изменение.	
Написать уравнения реакций.	
${\rm Pb_3O_4},\ $ прибавить 2–3 мл концентрированимарганца (II).	нчике шпателя) оксида свинца (IV) или сурика ной HNO ₃ и 1–2 капли раствора сульфата
Смесь нагреть до кипения. После отстаивания отметить цвет раство	nna
•	-
написать уравнение реакции. Подоорат	ь коэффициенты электронно-ионным методом.
Эта реакция используется в аналитиче соединений марганца (II).	еской химии для качественного определения
Какие свойства в опытах а) и б) проявля	ют соли Mn (II)?
К нескольким крупинкам MnO ₂ добавит	смесью до интенсивного выделения газа.
Как доказать его наличие?	

Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом.
Какие свойства в этой реакции проявляет MnO_2 ?
4. ПОЛУЧЕНИЕ МАНГАНАТА КАЛИЯ
Сплавить в пробирке немного бертолетовой соли с кусочком гидроксида калия и несколькими крупинками оксида марганца (IV) или сульфата марганца (II). Каков цвет полученного сплава?
По охлаждении растворить сплав в небольшом объеме воды. Какой ион придает раствору окраску?
Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом.
Какие свойства в этой реакции проявляет MnO ₂ (или MnSO ₄)?
Какова роль гидроксида калия?
Раствор сохранить для следующего опыта.
5. СРОЙСТВА СОЕЩИЦЕНИЙ МАВГАЦИА (VI)
5. СВОЙСТВА СОЕДИНЕНИЙ МАРГАНЦА (VI) a) Образование и распад марганцовистой кислоты
К небольшому объему раствора манганата калия, полученного в опыте 4, добавить
разбавленную уксусную кислоту.
Наблюдения:
Объяснить происходящее явление

	б) Восстановительные и окислительные свойства манганата калия К части полученного в опыте 4 зеленого раствора добавлять понемногу раство
еакти	ва, соответствующего варианту, до изменения цвета раствора:
	1. хлорной воды;
	2. сульфита натрия;
	3. сульфита натрия, подкисленного серной кислотой.
	Наблюдения:
	Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом
	Какие свойства в опыте $\pmb{\delta}$ проявляет манганат калия?
	Как влияет реакция среды на процесс восстановления манганата калия?
	6. РАЗЛОЖЕНИЕ ПЕРМАНГАНАТА КАЛИЯ ПРИ НАГРЕВАНИИ
	Нагреть в пробирке несколько кристаллов перманганата калия.
	Наблюдения:
	Доказать, какой выделяется газ
	Продолжать нагревание до прекращения его выделения.
	После охлаждения растворить содержимое пробирки в небольшом объеме воды.
	Какой цвет имеют полученный раствор и осадок?
	Написать уравнение реакции. Уравнять методом электронного баланса.

7. ОКИСЛИТЕЛЬНЫЕ СВОЙСТВА ПЕРМАНГАНАТА КАЛИЯ

กลวดีลก	а) в три пробирки налить по $1-2$ мл раствора перманганата калия и немного вленной H_2SO_4 . Подействовать указанными преподавателем реактивами:
разоав	
	 Na₂SO₃, FeSO₄, щавелевой кислоты; NaNO₂, FeSO₄, щавелевой кислоты;
	2. NaNO ₂ , гезО ₄ , щавелевой кислоты; 3. KI, FeSO ₄ , щавелевой кислоты;
	4. Na ₂ S, FeSO ₄ , щавелевой кислоты.
	С щавелевой кислотой пробирку нагреть. Наблюдения:
1.	паолюдения.
2.	
3.	
	V T
1	Написать уравнения реакций. Подобрать коэффициенты электронно-ионным методом.
1.	
2.	
3.	
	б) К 1–2 мл раствора КМпО ₄ добавить воду и затем раствор реактива:
	1. сульфита натрия;
	2. нитрита натрия;
	3. иодида калия;
	4. сульфида натрия.
	Наблюдения:

Наблюдения:	Написать уравнение реакции. Подобрать коэффициенты электронно-ионным м	етодом.
пствор щелочи, затем раствор реактива: 1. сульфита натрия; 2. нитрита натрия; 3. иодида калия; 4. сульфида натрия. Смесь перемешать. Отметить, как изменился цвет раствора. Через некоторое время наблюдать образование осадка. Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом г) К раствору сульфата марганца (II) в пробирке добавлять по каплям раствоерманганата калия. Наблюдения: Испытать реакцию раствора индикатором. Индикатор —		
пствор щелочи, затем раствор реактива: 1. сульфита натрия; 2. нитрита натрия; 3. иодида калия; 4. сульфида натрия. Смесь перемешать. Отметить, как изменился цвет раствора. Через некоторое время наблюдать образование осадка. Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом г) К раствору сульфата марганца (II) в пробирке добавлять по каплям раствоерманганата калия. Наблюдения: Испытать реакцию раствора индикатором. Индикатор —		
пствор щелочи, затем раствор реактива: 1. сульфита натрия; 2. нитрита натрия; 3. иодида калия; 4. сульфида натрия. Смесь перемешать. Отметить, как изменился цвет раствора. Через некоторое время наблюдать образование осадка. Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом г) К раствору сульфата марганца (II) в пробирке добавлять по каплям раствоерманганата калия. Наблюдения: Испытать реакцию раствора индикатором. Индикатор —		
пствор щелочи, затем раствор реактива: 1. сульфита натрия; 2. нитрита натрия; 3. иодида калия; 4. сульфида натрия. Смесь перемешать. Отметить, как изменился цвет раствора. Через некоторое время наблюдать образование осадка. Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом г) К раствору сульфата марганца (II) в пробирке добавлять по каплям раствоерманганата калия. Наблюдения: Испытать реакцию раствора индикатором. Индикатор —		
аствор щелочи, затем раствор реактива: 1. сульфита натрия; 2. нитрита натрия; 3. иодида калия; 4. сульфида натрия. Смесь перемешать. Отметить, как изменился цвет раствора. Через некоторое время наблюдать образование осадка. Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом г) К раствору сульфата марганца (II) в пробирке добавлять по каплям раствоерманганата калия. Наблюдения: Испытать реакцию раствора индикатором. Индикатор — вет, среда, рН		
1. сульфита натрия; 2. нитрита натрия; 3. иодида калия; 4. сульфида натрия. Смесь перемешать. Отметить, как изменился цвет раствора. Через некоторое время наблюдать образование осадка. Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом г) К раствору сульфата марганца (II) в пробирке добавлять по каплям раствоерманганата калия. Наблюдения: Испытать реакцию раствора индикатором. Индикатор —	в) Налить в пробирку немного раствора КМпО4, добавить к нему концентриро	эванны
2. нитрита натрия; 3. иодида калия; 4. сульфида натрия. Смесь перемешать. Отметить, как изменился цвет раствора. Через некоторое время наблюдать образование осадка. Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом г) К раствору сульфата марганца (II) в пробирке добавлять по каплям раствоерманганата калия. Наблюдения: Испытать реакцию раствора индикатором. Индикатор —	аствор щелочи, затем раствор реактива:	
3. иодида калия; 4. сульфида натрия. Смесь перемешать. Отметить, как изменился цвет раствора. Через некоторое время наблюдать образование осадка. Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом г) К раствору сульфата марганца (II) в пробирке добавлять по каплям раствоерманганата калия. Наблюдения: Испытать реакцию раствора индикатором. Индикатор —	1. сульфита натрия;	
4. сульфида натрия. Смесь перемешать. Отметить, как изменился цвет раствора. Через некоторое время наблюдать образование осадка. Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом г) К раствору сульфата марганца (II) в пробирке добавлять по каплям раствоерманганата калия. Наблюдения: Испытать реакцию раствора индикатором. Индикатор —	2. нитрита натрия;	
Смесь перемешать. Отметить, как изменился цвет раствора	3. иодида калия;	
Отметить, как изменился цвет раствора	4. сульфида натрия.	
Через некоторое время наблюдать образование осадка	Смесь перемешать.	
Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом г) К раствору сульфата марганца (II) в пробирке добавлять по каплям раствоерманганата калия. Наблюдения: Испытать реакцию раствора индикатором. Индикатор —	Отметить, как изменился цвет раствора	
г) К раствору сульфата марганца (II) в пробирке добавлять по каплям раство ерманганата калия. Наблюдения: Испытать реакцию раствора индикатором. Индикатор —	Через некоторое время наблюдать образование осадка	
г) К раствору сульфата марганца (II) в пробирке добавлять по каплям раство ерманганата калия. Наблюдения: Испытать реакцию раствора индикатором. Индикатор —		
ерманганата калия. Наблюдения: Испытать реакцию раствора индикатором. Индикатор —	Timine pennami redeception necessition in	• годом
ерманганата калия. Наблюдения: Испытать реакцию раствора индикатором. Индикатор —		
ерманганата калия. Наблюдения: Испытать реакцию раствора индикатором. Индикатор —		
ерманганата калия. Наблюдения: Испытать реакцию раствора индикатором. Индикатор —		
ерманганата калия. Наблюдения: Испытать реакцию раствора индикатором. Индикатор —		
ерманганата калия. Наблюдения: Испытать реакцию раствора индикатором. Индикатор —		
ерманганата калия. Наблюдения: Испытать реакцию раствора индикатором. Индикатор —		
Наблюдения: Испытать реакцию раствора индикатором. Индикатор —	г) К раствору сульфата марганца (II) в пробирке добавлять по каплям	раство
Испытать реакцию раствора индикатором. Индикатор –	ерманганата калия.	
Испытать реакцию раствора индикатором. Индикатор –	Наблюдения:	
вет, среда, рН		
Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом	вет, среда, рН	
	Написать уравнение реакции. Подобрать коэффициенты электронно-ионным м	етодом
		, ,

д) Влияние кислотности среды на скорость окисления

Налить в две пробирки по 2–3 мл раствора KBr и добавить одновременно равные объемы в первую пробирку разбавленной H_2SO_4 , во вторую – разбавленной CH_3COOH .

Добавить в каждую пробирку по 10–15 капель раствора КМпО₄.

Наблюдения:	
Отметить, одновременно ли наблюдается исчезновение окраски в обеих пробирках.	
Как влияет кислотность среды на скорость окисления перманганатом калия?	
Написать уравнения реакций. Подобрать коэффициенты электронно-ионным методом. с ${ m H}_2{ m SO}_4$:	
c CH ₃ COOH:	
Объяснить явления, наблюдаемые в опытах 7а, 7б, 7в. Как влияет реакция среды на восстановление перманганата калия?	
ЖЕЛЕЗО, КОБАЛЬТ, НИКЕЛЬ И ИХ СОЕДИНЕНИЯ 1. КОРРОЗИЯ ЖЕЛЕЗА ПРИ ЕГО КОНТАКТЕ С ЦИНКОМ И ОЛОВОМ	
В скрепку для бумаги закрепить кусочек металлического цинка, а в другую скрепку—такой же кусочек олова. В две пробирки налить воды и добавить по $2-3$ капли разбавленной H_2SO_4 и раствора красной кровяной соли $K_3[Fe(CN)_6]$ — вещества, которое является реактивом на ионы Fe^{2+} , образуя с ним соединение синего цвета. Обе скрепки опустить в приготовленные растворы. Какую окраску приобретает жидкость, в которую опущена скрепка с оловом, через	
несколько минут? Какие ионы появились в растворе? На что это указывает? В другой пробирке окрашивание можно наблюдать только после растворения всего	

цинка.

Разобрать все протекающие реакции, принимая во внимание величин электродных потенциалов Fe, Zn и Sn	
Записать схемы коррозии оцинкованного и луженого железа в кислой с	реде.
-	
2. ВЗАИМОДЕЙСТВИЕ ЖЕЛЕЗА С КИСЛОТАМИ	
(Работу проводить в вытяжном шкафу.)	
К небольшому количеству железных опилок в отдельных проби	=
указанные преподавателем растворы кислот. Нагреть те пробирки, в которы	х на холоде не
началась реакция.	
1. HCl (разб.), HNO ₃ (разб.);	
2. H ₂ SO ₄ (конц.), H ₂ SO ₄ (разб.);	
3. HCl (конц.), HNO ₃ (конц.);	
4. HNO ₃ (конц.), HNO ₃ (разб.).	
Наблюдать происходящие явления.	
Со всеми ли кислотами взаимодействует железо?	
Определить по характерному запаху и окраске выделяющиеся в резу-	льтате реакции
газы.	
Написать уравнения реакций. Подобрать коэффициенты электронно-ио.	нным методом.

2.
Объяснить, почему в некоторых опытах реакция идет лишь при нагревании.
3. ПАССИРОВАНИЕ И ОКСИДИРОВАНИЕ ЖЕЛЕЗА (Работу проводить в вытяжном шкафу.) В широкую пробирку налить дымящую HNO ₃ и внести в нее хорошо очищенную
железную проволоку (или гвоздь). Через 1–2 мин осторожно, не касаясь стенок пробирки, вынуть железо из кислоты, промыть его в стакане с водой и внести на несколько секунд в раствор медного купороса.
Выделяется ли на нем медь?
Объяснить, почему после обработки концентрированной HNO ₃ на железе не выделяется медь.
Написать уравнение пассивирования железа азотной кислотой. Подобрать коэффициенты электронно-ионным методом.
Какое значение имеет удар палочкой по железу?

4. ПОЛУЧЕНИЕ ГИДРОКСИДА ЖЕЛЕЗА (II) И ЕГО СВОЙСТВА

naabar	а) Приготовить раствор сульфата железа (II) из опилок железа, взятых в избытке, и
разоан	вленного раствора H_2SO_4 . Отметить его цвет.
	Написать уравнение реакции.
	3–4 мл полученного раствора отлить в пробирку и добавить к нему раствор NaOH. Наблюдения:
	Написать уравнение реакции.
	Объяснить, почему на воздухе осадок меняет цвет (как?)
	Написать уравнение реакции. Уравнять методом электронного баланса.
***	б) Испытать отношение Fe(OH) ₂ к разбавленному раствору HCl и избытку раствора и. Написать уравнения реакций.
NaOH	:
	Какими свойствами обладает гидроксид железа (II)?
цвет _	5. ГИДРОЛИЗ СОЛЕЙ ЖЕЛЕЗА (II) Раствор соли железа (II) испытать индикатором. Индикатор —
	Написать уравнения гидролиза.

6. ПОЛУЧЕНИЕ СОЛЕЙ ЖЕЛЕЗА (II)

(Опыт 66 проводить в вытяжном шкафу.)

а) Образование карбоната и гидрокарбоната железа (II)

Опыт проходит удачно только в том случае, если все операции проводятся быстро и соединения железа (II) не успевают окислиться.

Немного дистиллированной воды, подкисленной одной каплей разбавленной H₂SO₄, кипятить в пробирке в течение 1–2 мин. Затем бросить в нее несколько крупинок соли железа (II) – соли Мора ______. Не взбалтывая раствор, снова прокипятить содержимое пробирки. Для чего кипятят воду, в которой растворяют соль железа (II)? _____ Полученный раствор охладить под краном с холодной водой и добавить к нему около 1 мл раствора соды. Наблюдения: Написать уравнение реакции в молекулярной и сокращенной ионной формах. Объяснить, почему на воздухе постепенно изменяется его цвет (как?). Написать уравнение реакции. Через жидкость с осадком пропустить ток СО2 из аппарата Киппа. Что происходит? _____ Затем содержимое пробирки нагреть до кипения. Что наблюдаете? Написать уравнения реакций.

б) Получение сульфида железа (II)	
К раствору сульфата железа (II) добавить раство	р сульфида натрия.
Что происходит ?	
Написать уравнение реакции.	
Добавить к содержимому пробирки разбавленны Наблюдения:	-
Как действует сероводород на раствор сульфата	железа (II)?
Объяснить различие в действии сульфида а сульфата железа (II).	
7. РЕАКЦИЯ НА ИОН К раствору сульфата железа (II) добавить рас красной кровяной соли. Наблюдения:	
Написать уравнение реакции.	
8. ПОЛУЧЕНИЕ И СВОЙСТВА ГИДРО а) Получить гидроксид железа (III).	ОКСИДА ЖЕЛЕЗА (III)
Отметить его вид и цвет	растворам кислот. Написать уравнения
реакций.	

Свежеосажденный Fe(OH) ₃ растворяется частично в горячих концентрированных растворах щелочей. Написать уравнение реакции.
б) Снова получить осадок Fe(OH) ₃ . Отфильтровать его и промыть на фильтре водой. Затем перенести в фарфоровый тигель и прокалить. Что происходит?
Написать уравнение реакции.
Какими свойствами обладает гидроксид железа (III)?
9. ГИДРОЛИЗ СОЛЕЙ ЖЕЛЕЗА (III) а) Растворить в воде немного хлорида железа (III). Определить реакцию раствора. Индикатор —
б) В две пробирки налить по 2–3 мл раствора хлорида железа (III). В одну из них добавить несколько капель концентрированной НС1. Отметить изменение цвета раствора
Раствор хлорида железа (III) во второй пробирке разбавить водой и нагреть до кипения. Как изменился цвет раствора?
Объяснить результаты этих опытов.
в) К раствору хлорида железа (III) добавить раствор соды. Наблюдения:
Написать уравнение реакции в молекулярной и сокращенной ионной формах.

Как можно доказать, что полученный осадок не является солью угольной кислоты?	
Указать, какие соли — Fe (II) или Fe (III) — сильнее подвергаются гидролизу, и объяснить почему.	
10. РЕАКЦИЯ НА ИОН Fe ³⁺ а) К раствору хлорида железа (III) добавить раствор гексацианоферрата (II) калия - желтой кровяной соли. Что происходит?	
Написать уравнение реакции.	
б) К раствору хлорида железа (III) добавить раствор роданида калия. Отметить цвет полученного раствора роданида железа (III)	
11. ОКИСЛЕНИЕ СОЕДИНЕНИЙ ЖЕЛЕЗА (II) Налить в пробирку 2–3 мл раствора сульфата железа (II), добавить разбавленный раствор H ₂ SO ₄ , затем добавить реактив, указанный преподавателем: 1. немного концентрированной HNO ₃ и нагреть до кипения; 2. бромную воду; 3. раствор КМпO ₄ ; 4. раствор K ₂ Cr ₂ O ₇ . Наблюдения:	
Написать уравнения реакций. Подобрать коэффициенты электронно-ионным методом.	
Какое свойство в этих реакциях проявляет FeSO ₄ ?	

Доказать, что в результате всех трех опытов ион Fe^{2+} окислился в ион Fe^{3+} .
12. ВОССТАНОВЛЕНИЕ СОЕДИНЕНИЯ ЖЕЛЕЗА (III) а) К раствору FeCl ₃ добавить сероводородную воду (или раствор сульфида натрия). Что наблюдаете?
Написать уравнение реакции. Уравнять методом электронного баланса.
Растворить осадок в разбавленной соляной кислоте.
Доказать присутствие в растворе ионов Fe^{2+} Почему не образуется сульфид железа (III)?
б) К раствору $FeCl_3$ добавить раствор KI. Наблюдения:
Объяснить изменение цвета раствора
Написать уравнение реакции. Уравнять методом электронного баланса.
Какую роль играет FeCl ₃ в реакциях?

13. ПОЛУЧЕНИЕ ГИДРОКСИДА КОБАЛЬТА (II) И ЕГО СВОЙСТВА
а) К раствору CoCl ₂ добавить раствор NaOH.
Отметить цвет образовавшейся основной соли кобальта
Раствор с осадком нагреть. Как изменился цвет и состав осадка?
Написать уравнения реакций.
Что происходит с осадком гидроксида кобальта (II) при стоянии на воздухе?
Написать уравнение реакции. Уравнять методом электронного баланса.
б) Испытать, растворяется ли гидроксид кобальта (II) в разбавленных раствора
кислот и в избытке концентрированного раствора щелочи. Написать уравнения реакций. HCl:
NaOH:
Какими свойствами обладает гидроксид кобальта (II)?
14. ПОЛУЧЕНИЕ ОКСИДА КОБАЛЬТА (III) И ЕГО СВОЙСТВА (Работу проводить в вытяжном шкафу.)
а) Несколько кристаллов нитрата кобальта (II) нагреть осторожно на крышке от тигл
до прекращения выделения газов. Наблюдения:
Какие газы выделяются при разложении? Как это определить?
Что остается на крышке?
Написать уравнение реакции. Уравнять методом электронного баланса.

б) Небольшую порцию полученного оксида кобальта (III) положить в пробирку, добавить немного концентрированной HCl и нагреть.
Какой выделяется газ? Отметить его цвет и запах (осторожно!).
Каков цвет образующегося раствора? Для какого иона он характерен?
Написать уравнение реакции. Уравнять методом электронного баланса.
Какие свойства проявляет оксид кобальта (III) в этой реакции?
15. ПОЛУЧЕНИЕ ГИДРОКСИДА КОБАЛЬТА (III) И ЕГО СВОЙСТВА (Работу проводить в вытяжном шкафу.) а) К 1–2 мл раствора хлорида кобальта (II) добавить 4–5 мл бромной воды, а затем раствор гидроксида натрия. Наблюдения:
Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом.
б) Раствор с осадком полученный в опыте <i>15а</i> оставить на несколько минут в пробирке. С полученного осадка по возможности полностью слить жидкость, для удаления излишков жидкости можно воспользоваться полоской фильтровальной бумаги. Затем к осадку добавить концентрированную HCl и нагреть. Наблюдения:

Какие свойства проявляет в этой реакции гидроксид кобальта (III)? К полученному раствору добавить немного воды. Объяснить изменение цвета раствора. 16. ПОЛУЧЕНИЕ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ КОБАЛЬТА а) Получение аммиакатов кобальта К раствору хлорида кобальта (II) добавить раствор NH ₄ Cl и раствор аммиака в избытке. Отметить цвет раствора образовавшегося аммиаката кобальта (II). Написать уравнение реакции. Объяснить, почему при стоящии на воздухе раствор постепенно изменяет свой цвет (на какой?). Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом. Объяснить, почему неустойчив аммиакат кобальта (II). 6) Получение гексанитритокобальтата (III) калия К раствору хлорида кобальта (II) прибавить избыток КNО2, затем немного СН3СООН и патреть. Наблюдения: Какой газ выделяется?	Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом.			
К полученному раствору добавить немного воды. Объяснить изменение цвета раствора				
К полученному раствору добавить немного воды. Объяснить изменение цвета раствора				
раствора	Какие свойства	проявляет в этой реакц	ии гидроксид ко	бальта (III)?
а) Получение аммиакатов кобальта К раствору хлорида кобальта (II) добавить раствор NH ₄ Cl и раствор аммиака в избытке. Отметить цвет раствора образовавшегося аммиаката кобальта (II)	•			
избытке. Отметить цвет раствора образовавшегося аммиаката кобальта (II). Написать уравнение реакции. Объяснить, почему при стоянии на воздухе раствор постепенно изменяет свой цвет (на какой?). Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом. Объяснить, почему неустойчив аммиакат кобальта (II). б) Получение гексанитритокобальтата (III) калия К раствору хлорида кобальта (II) прибавить избыток KNO ₂ , затем немного CH ₃ COOH и нагреть. Наблюдения:	а) Получение а	ммиакатов кобальта		
Отметить цвет раствора образовавшегося аммиаката кобальта (II)	1 17	орида кобальта (II) до	бавить раствор	NH ₄ Cl и раствор аммиака в
Объяснить, почему при стоянии на воздухе раствор постепенно изменяет свой цвет (на какой?) Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом. Объяснить, почему неустойчив аммиакат кобальта (II) 6) Получение гексанитритокобальтата (III) калия К раствору хлорида кобальта (II) прибавить избыток KNO ₂ , затем немного CH ₃ COOH и нагреть. Наблюдения:		раствора образовавшего	ося аммиаката ко	бальта (II)
(на какой?) Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом. Объяснить, почему неустойчив аммиакат кобальта (II) б) Получение гексанитритокобальтата (III) калия К раствору хлорида кобальта (II) прибавить избыток KNO2, затем немного CH3COOH и нагреть. Наблюдения:	Написать уравн	ение реакции.	1	
Объяснить, почему неустойчив аммиакат кобальта (II). б) Получение гексанитритокобальтата (III) калия К раствору хлорида кобальта (II) прибавить избыток KNO ₂ , затем немного CH ₃ COOH и нагреть. Наблюдения:		• •	• • •	постепенно изменяет свой цвет
б) Получение гексанитритокобальтата (III) калия К раствору хлорида кобальта (II) прибавить избыток KNO ₂ , затем немного CH ₃ COOH и нагреть. Наблюдения:	Написать уравн	ение реакции. Подобра	ть коэффициенті	ы электронно-ионным методом.
б) Получение гексанитритокобальтата (III) калия К раствору хлорида кобальта (II) прибавить избыток KNO ₂ , затем немного CH ₃ COOH и нагреть. Наблюдения:				
б) Получение гексанитритокобальтата (III) калия К раствору хлорида кобальта (II) прибавить избыток KNO ₂ , затем немного CH ₃ COOH и нагреть. Наблюдения:				
К раствору хлорида кобальта (II) прибавить избыток KNO_2 , затем немного CH_3COOH и нагреть. Наблюдения:	Объяснить, поч	ему неустойчив аммиак	сат кобальта (II).	
и нагреть.	б) Получение г	ексанитритокобальта	та (III) калия	
Наблюдения:		рида кобальта (II) приб	авить избыток К	NO ₂ , затем немного CH ₃ COOH
	-			

Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом
Какие свойства в реакции проявляет KNO ₂ ?
17. ПОЛУЧЕНИЕ ГИДРОКСИДА НИКЕЛЯ (II) И ЕГО СВОЙСТВА Получить гидроксид никеля (II).
Отметить его характер и цвет Написать уравнение реакции.
Испытать отношение осадка к разбавленным кислотам и к избытку щелочи. Написат уравнение реакции. HCI:
NaOH:
Какими свойствами обладает гидроксид никеля (II)?
18. ПОЛУЧЕНИЕ ГИДРОКСИДА НИКЕЛЯ (III) И ЕГО СВОЙСТВА (Работу проводить в вытяжном шкафу.)
а) К 1–2 мл раствора $NiCl_2$ прилить 4–5 мл бромной воды, а затем раствор $NaOH$.
Наблюдения:
Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом
б) С полученного осадка по возможности полностью слить жидкость, затем добавить нему концентрированной HCl и нагреть. Какой выделяется газ? Отметить его цвет, запах (осторожно!).

Написать уравнение реакции. Уравнять методом электрон	иного баланса.
Какие свойства в этой реакции проявляет гидроксид нике	ля (III)?
19. ПОЛУЧЕНИЕ АММИАКАТА НИКЕ. К раствору сульфата никеля (II) прилить раствор образующегося вначале сульфата гидроксоникеля (II). Отметь ходе опыта соединений.	аммиака до растворения
Написать уравнения реакций.	1
МЕДЬ, СЕРЕБРО И ИХ СОЕДИН	ЕНИЯ
1. ПОЛУЧЕНИЕ МЕДИ ВОССТАНОВЛЕНИЕМ ИОНОВ ИЗ Налить в пробирку раствор соли меди (II), опустить металла, способного восстанавливать ионы меди:	в него несколько кусочков
Обосновать выбор металла	
Наблюдать за изменением окраски раствора и поверхност	ги металла.
Написать уравнение реакции. Уравнять методом электрон	ного баланса.

Объяснить происходящие явления, используя данные таблицы стандартных электродных потенциалов.
2. СВОЙСТВА МЕДИ
(Работу проводить в вытяжном шкафу.)
В опыте используются фольга или проволока, предварительно обработанные
наждачной бумагой для удаления лака с поверхности.
а) Взаимодействие меди с кислотами
К небольшому количеству медных стружек или проволоки добавить в отдельных
пробирках указанные растворы кислот:
1. HCl (pas6.), HNO ₃ (pas6.);
2. H ₂ SO ₄ (конц.), H ₂ SO ₄ (разб.);
3. HCl (конц.), HNO ₃ (конц.);
4. HNO ₃ (конц.), HNO ₃ (разб.).
Наблюдать происходящие явления. Те пробирки, в которых реакция не началась, нагреть (осторожно!)
Со всеми ли кислотами взаимодействует медь?
Обратить внимание на окраску раствора. Присутствие какого иона обусловливает эту окраску?
Определить по характерному запаху и окраске выделяющиеся в результате реакции газы.
Написать уравнения реакций. Подобрать коэффициенты электронно-ионным методом. 1.

2.
б) Взаимодействие меди с ионами менее активных металлов
Пользуясь электрохимическим рядом напряжений металлов, определить, ионы как
металлов в растворах их солей способны окислять медь.
В раствор нитрата ртути (II) или нитрата серебра опустить конец медной проволог
предварительно зачищенной наждачной бумагой.
Какие наблюдаются признаки протекания химической реакции?
Написать уравнение реакции.
3. ПОЛУЧЕНИЕ И СВОЙСТВА ГИДРОКСИДА МЕДИ (II)
а) Получить осадок гидроксида меди (II). Отметить цвет и характер осадка. Написа
уравнение реакции в молекулярной и сокращенной ионной формах. Полученный осад
сохранить для опытов $3 \emph{6}$ и $3 \emph{6}$.
б) Доказать экспериментально, что гидроксид меди (II) проявляет амфотерн
свойства. Написать уравнения реакций в молекулярной и ионной формах.
в) Жидкость с осадком гидроксида меди взболтать и нагреть до кипения. Наблюдени
Помоги угология доп мога осолио?
Почему изменился цвет осадка? Написать уравнение реакции.
There is beautiful.

	какои вывод можно сделать о термическои стоикости гидроксида меди (п)?
цвет	4. ГИДРОЛИЗ СОЛЕЙ МЕДИ (II) а) Испытать индикаторной бумажкой раствор соли меди (II). Индикатор —
	б) К раствору сульфата меди (II) добавить раствор карбоната натрия. Наблюдения:
карбо	Написать уравнение реакции взаимодействия растворов сульфата меди (II) с натом натрия при участии воды в молекулярной и сокращенной ионной формах.
выпад	5. ПОЛУЧЕНИЕ И СВОЙСТВА КОМПЛЕКСНОЙ СОЛИ МЕДИ (II) (Работу проводить в вытяжном шкафу.) К раствору сульфата меди (II) добавлять по каплям раствор аммиака до растворения дающего вначале осадка основной соли. Отметить цвет и характер осадка.
	Написать уравнения реакций в молекулярной и сокращенной ионной формах.
образ	В состав какого иона входит медь? Каков цвет овавшегося иона?
соли	Составить уравнения электролитической диссоциации образовавшейся комплексной по ступеням и суммарное. Записать выражение константы нестойкости комплексного

142

иона по каждой ступени и общей константы нестойкости.

Уравнение диссоциации по ступеням	Выражение Кдис.
Доказать опытным путем, что в растворе этой соли уравнения реакций в молекулярной и сокращенной ионной	
Пользуясь таблицей произведения растворимости, которого можно обнаружить ионы меди (II) в раство уравнения реакций в молекулярной и сокращенной ионной	ре комплексной соли. Написать
6. ПОЛУЧЕНИЕ ГИДРОКСИДА И ОКС Из имеющихся в лаборатории реактивов получить ос	* * *
К образовавшемуся осадку добавить избыток раст Смесь хорошо перемешать и нагреть. Наблюдения:	вора щелочи и раствор глюкозы.
Образуется сначала осадок гидроксида меди (I) нагревании переходит в оксид меди (I). Отметить окраску гидроксида меди (I) меди (I)	
Написать уравнения реакций. Подобрать коэффицие	нты электронно-ионным методом.
_	

	Налить в пробирки раствор соли серебра и опустить металлы.
	Наблюдения:
	Сравнить скорости происходящих реакций. Дать объяснения.
1.	Написать уравнения реакций. Указать окислитель и восстановитель.
2.	
3.	
	б) Восстановление ионов серебра сложными веществами 1. Получить из имеющихся в лаборатории реактивов тетрагидроксостаннат (II) натрия
	К полученному раствору добавить 1–2 капли раствора соли серебра. Наблюдения:
	Что представляет собой выпавший осадок?
	В какой среде протекает данная реакция?
	Harvaner and reserve many to the first and have been account to the first and the second seco
	Написать уравнение реакции. Подобрать коэффициенты электронно-ионным методом
	написать уравнение реакции. Подоорать коэффициенты электронно-ионным методом

2. Получение серебряного зеркала.

В хорошо вымытую, обезжиренную спиртом, сухую пробирку налить раствор $AgNO_3$, добавить к нему по каплям раствора NH_3 до растворения выпавшего вначале осадка Ag_2O (избегать избытка раствора NH_3).

К полученному раствору прилить 10%-й раствор глюкозы в объеме, равном объему раствора, находящегося в пробирке.

Раствор перемешать и поставить на водяную баню при 50–60 °C на 2–3 мин. Наблюдения:		
Какое вещество образовалось на стенках пробирки?		
Какова роль глюкозы в этой реакции?		
Написать уравнение реакции, учитывая, что глюкоза $C_6H_{12}O_6$ в результате реакции превращается в глюконовую кислоту $C_6H_{12}O_7$.		
На основании опытов a , δ и s охарактеризовать свойства ионов серебра (I).		
9. ПОЛУЧЕНИЕ ОКСИДА СЕРЕБРА Из нитрата серебра взаимодействием со щелочью (гидроксидом натрия) получить осадок оксида серебра. Написать уравнение реакции.		
Отметить цвет и характер осадка		
Какой вывод можно сделать о прочности гидроксида серебра?		
Экспериментально доказать основной характер полученного соединения. Какую кислоту следует брать для доказательства основного характера оксида серебра (I)? Почему?		
10. ГАЛОГЕНИДЫ СЕРЕБРА а) Получить указанный преподавателем галогенид серебра. Написать уравнение реакции.		

HNO:	Испытать отношение осадка к HNO ₃ . Почему галогениды серебра не растворяются в 3?
,	·
	б) Полученный осадок галогенида серебра отфильтровать и промыть водой.
	Испытать действие на них света (лучше прямого солнечного)
	Написать уравнение реакции.
	11. РЕАКЦИЯ РАСТВОРА НИТРАТА СЕРЕБРА
цвет _	Определить индикатором реакцию раствора нитрата серебра. Индикатор —, среда, рН
	Сделать вывод о силе гидроксида серебра как основания
	Написать уравнения гидролиза нитрата серебра.

цинк, кадмий, ртуть и их соединения

1. ВЗАИМОДЕЙСТВИЕ ЦИНКА С КИСЛОТАМИ

(Работу проводить в вытяжном шкафу.)

В две пробирки поместить по кусочку гранулированного цинка и прилить указанные растворы кислот. Нагреть те пробирки, в которых на холоде не началась реакция.

- 1. HCl (разб.), HNO₃ (разб.);
- 2. Н₂SO₄ (конц.), Н₂SO₄ (разб.);
- 3. HCl (конц.), HNO₃ (конц.);
- 4. HNO₃ (конц.), HNO₃ (разб.).

Наблюд	ать происходящие явления
	и ли кислотами взаимодействует цинк?
	пить по характерному запаху и окраске выделяющиеся в результате реакции
_	растворения цинка в разбавленной HNO ₃ доказать присутствие ионов аммония растворе. Описать методику опыта. Записать наблюдения и уравнения
—————————————————————————————————————	гь уравнения реакций. Подобрать коэффициенты электронно-ионным методом.
2.	
Помести раствор щелоч	2. ВЗАИМОДЕЙСТВИЕ ЦИНКА С ЩЕЛОЧАМИ ить в пробирку немного цинковых стружек и добавить концентрированный и. Нагреть.
	ать выделение газа. Доказать опытным путем, что выделяющийся газ — ать методику опыта. Записать наблюдения и уравнения реакций.

Написать уравнение проделанной реакции. Подобрать коэффициенты электронно-ионным методом.
3. ПОЛУЧЕНИЕ И СВОЙСТВА ГИДРОКСИДА ЦИНКА
Из имеющихся в лаборатории реактивов получить гидроксид цинка.
Написать уравнение реакции в молекулярной и ионной формах.
Отметить цвет и характер осадка
Доказать опытным путем, что гидроксид цинка обладает амфотерными свойствами (использовать разбавленный раствор кислоты и концентрированный раствор щелочи). Написать уравнения реакций в молекулярной и ионной формах.
В каком порядке следует сливать растворы? Почему?
4. ПОЛУЧЕНИЕ СУЛЬФИДА ЦИНКА
Получить в двух пробирках осадок сульфида цинка. В одной пробирке использовать в
качестве осадителя сероводородную воду, во второй – сульфид натрия.
Отметить цвет и характер осадка
Сравнить объемы образовавшихся осадков. Объяснить
Отстоявшийся осадок сульфида цинка, образовавшийся при действии сероводорода, отфильтровать и к фильтрату добавить раствор ацетата натрия.
Наблюдения:

Объяснить наблюдаемое явление, написать уравнение реакции.			
На основании проделани добиться полного осаждения ио			
5. КОМІ К раствору соли цинка образования осадка, а затем до п Наблюдения:	полного его растворен	иям раствор гидроксид ия.	да аммония до
Написать уравнения ре полученном комплексном соеди	•	<u>*</u>	нисло цинка в
а) Испытать индикаторо цинка. Индикатор — Написать уравнения гидр	, цвет	створов сульфата цині	
			-
б) В горячий раствор хлогего поверхность наждачной бум Наблюдения:	-	кусочек цинка, предвари	ительно очистив
Объяснить механизм про	исходящих процессов	·	
Написать уравнения реакт	ций в молекулярной и	ионной формах.	

Как добавление цинка смещает равновесие гидролиза? Объяснить.
7. ПОЛУЧЕНИЕ КАДМИЯ ВОССТАНОВЛЕНИЕМ ЕГО ИОНОВ ИЗ РАСТВОРА
Подобрать из имеющихся в лаборатории три металла различной активности, которыми можно восстановить ионы кадмия из растворов его солей, привести их стандартные электродные потенциалы.
Проделать соответствующий опыт, используя один из имеющихся в лаборатории металлов.
Наблюдения:
Написать уравнение реакции. Уравнять методом электронного баланса.
8. ПОЛУЧЕНИЕ И СВОЙСТВА ГИДРОКСИДА КАДМИЯ Из имеющихся в лаборатории реактивов получить гидроксид кадмия, отметить цвет и характер осадка
Написать уравнение реакции.
Испытать отношение гидроксида кадмия к разбавленной соляной кислоте и избытку щелочи. HC1:
NaOH:
Какие свойства проявляет этот гидроксид?
Отметить различие в свойствах гидроксидов цинка и кадмия. Объяснить.

9. ПОЛУЧЕНИЕ И СВОЙСТВА СУЛЬФИДА КАДМИЯ

Получить сульфид кадмия, используя в кач Отметить цвет и характер осадка.	
Написать уравнение реакции.	
Слить с осадка жидкость и добавить к нему ра Наблюдается ли растворение осадка? Пользуясь величинами произведения раство	
цинка и сульфид кадмия различно относятся к HCl	
10. КОМПЛЕКСНЫЕ СОЕДИ К раствору сульфата кадмия добавлять по к первоначально образующегося осадка. Отметить цве	аплям раствор аммиака до растворения
Написать уравнение реакции, учитывая, ч полученном комплексном соединении равно четырем	•
Написать уравнение электролитической ди соединения и выражение константы нестойкости ком I ст.	-
II ст.	
III ct.	
IV ct.	
11. ГИДРОЛИЗ СОЛЕЙ а) Испытать индикатором реакцию среды р, цвет, среда Написать уравнение реакции гидролиза в моле	аствора сульфата кадмия. Индикатор –, pH

б) К раствору сульфата кадмия при	К раствору сульфата кадмия прилить раствор карбоната натрия.		
Наблюдения:	Наблюдения:		
Продуктом какой ступени гидролиз	иза является образовавшееся вещество?		
Написать молекулярные и ионные ступеням.	е уравнения реакций гидролиза карбоната кадмия п		
І ст.	II ст.		
Для разделения ионов ${\rm Zn}^{2+}$ и ${\rm Cd}^{2+}$ сульфидов в разбавленной HCl.	НИЕ ИОНОВ Zn^{2+} и Cd^{2+} можно использовать различную растворимость из Cd^{2+} друг от друга, используя сероводород или реподавателю.		
Приготовить смесь растворов соле разработанному плану.	ей цинка и кадмия и провести разделение смеси п		

Ртуть и ее соединения

Правила работы с ртутью

Пары ртути и все ее соединения ядовиты, поэтому при работе с ней и ее соединениями необходимо придерживаться следующих правил:

- 1. Приборы и посуду с ртутью нужно ставить на особую подставку, например поднос с высокими бортами.
 - 2. Все опыты с ртутью необходимо проводить в вытяжном шкафу.
- 3. Если по каким-либо причинам ртуть окажется разлитой, то все ее капельки необходимо сейчас же собрать и поместить в специальную склянку.
- 4. Все остатки ртути и растворов ее солей не выливать в раковину, а сливать в специальную посуду, находящуюся у лаборанта.

13. ПОЛУЧЕНИЕ РТУТИ

(Работу проводить в вытяжном шкафу.)

	Небольшое количество красной модификации оксида ртути (II) нагреть в пробирке, ной горизонтально в штативе.
На	блюдения:
	жазать разложение оксида ртути (II), обнаружив продукты реакции.
На	писать уравнение реакции.
зачищени Че фильтров На	В раствор соли ртути (II) опустить конец медной пластинки, предварительно ной наждачной бумагой. през несколько минут вынуть пластинку из раствора, промыть водой и протереть вальной бумагой. Польодать изменение вида поверхности пластинки
O6	босновать возможность ее протекания
От Ис уравнени	14. ПОЛУЧЕНИЕ ОКСИДА РТУТИ (II) И ЕГО СВОЙСТВА раствору нитрата ртути (II) добавить раствор гидроксида натрия. метить цвет и характер осадка
NaOH: _	
	кие свойства проявляют гидроксид и оксид ртути (II)?
	К нескольким кристаллам сульфата или нитрата ртути (II) по каплям добавлять воду
Pa	рения соли. збавить полученный раствор, наблюдать образование осадка основной Отметить цвет осадка
	епытать реакцию среды. Индикатор –, цвет,

Написать уравнения гидролиза.
Составить структурную формулу образовавшейся основной соли.
б) Проделать такой же опыт, подкислив предварительно воду разбавленным раствором HNO ₃ . Сравнить полученные результаты. Объяснить наблюдаемое явление
16. ПОЛУЧЕНИЕ ОКСИДА РТУТИ (I) К раствору $Hg_2(NO_3)_2$ прилить раствор щелочи. Отметить цвет и характер осадка. Написать уравнение реакции
Составить структурную формулу Hg_2O .
17. ПОЛУЧЕНИЕ КАЛОМЕЛИ а) Из растворимой соли ртути (I) получить каломель – хлорид ртути (I). Наблюдения: Написать уравнение реакции в молекулярной и сокращенной ионной формах.
б) Налить в пробирку 2–3 мл раствора сулемы и добавлять туда по каплям раствор SnCl ₂ . Наблюдения:

ЗАДАНИЯ

ДЛЯ ВНЕАУДИТОРНОЙ РАБОТЫ СТУДЕНТОВ

ТЕМА 1 ГАЛОГЕНЫ

Задания для теоретической подготовки

- 1. Строение атомов галогенов. Ковалентность. Характерные степени окисления.
- 2. Изменение свойств атомов в подгруппе (радиусы атомов, энергия ионизации, энергия сродства к электрону, электроотрицательность).
- 3. Нахождение в природе и методы получения галогенов.
- 4. Физические свойства галогенов (сравнительная характеристика).
- 5. Химические свойства галогенов:
 - а) взаимодействие с простыми веществами;
 - б) взаимодействие с водой, растворами щелочей, углеводородами.
- 6. Сравнительная характеристика свойств галогеноводородов, галогениды металлов, неметаллов, их свойства.
- 7. Кислородсодержащие кислоты и оксиды хлора, их строение, кислотно-основные и окислительно-восстановительные свойства. Номенклатура кислот и их солей.
- 8. Сравнительная характеристика свойств кислородсодержащих кислот хлора, брома и йода.

Задачи для самостоятельного решения

- 1. Раствор плотностью 1,1 г/мл, объемом 50 мл с массовой долей НВг 14 %, разбавили до 700 мл водой. Определить массовую долю и молярную концентрацию полученного раствора. Изменением объема при растворении пренебречь.
- 2. Галогенид кальция массой 0,200 г при взаимодействии с раствором нитрата серебра образовал галогенид серебра массой 0,376 г, окрашенный в желтый цвет. Определить, какая соль кальция была взята для анализа.
- 3. Определить тип химической связи в молекулах LiCl, SbCl $_3$, Cl $_2$ O, Cl $_2$. Ответ обосновать.
- 4. Написать формулы йодида натрия, гипоиодита калия, йодата калия, оксида йода (V), фторида йода (VII). Какие из этих веществ способны взаимодействовать с водой? Написать соответствующие уравнения реакций, указать среду и рН полученного раствора.

- 5. Определить пространственную структуру молекулы F_2O_1 , иона BrO_4^- .
- 6. Закончить уравнения реакций, подобрать коэффициенты ионно-электронным методом: $Cl_2 + FeCl_3 + NaOH \rightarrow Na_2FeO_4 + \dots$ $Ca(ClO)_2 + NaI + H_2SO_4 \rightarrow \dots$

- 1. При нормальных условиях один объем воды растворяет 600 объемов бромоводорода. Найти массовую долю HBr в полученном растворе.
- 2. К раствору, содержащему 3,2 г бромида калия, прибавили 12 г брома-сырца, содержащего примесь хлора. Смесь выпарили и остаток высушили. Масса остатка оказалась равной 2,6 г. Определить массовую долю хлора в броме-сырце.
- 3. Определить тип химической связи в молекулах NaF, BF_3 , ClF, F_2O . Ответ обосновать.
- 4. Написать формулы йодида цинка, бромата натрия, оксида хлора (VII), бромита натрия, фторида брома (III). Какие из этих веществ способны взаимодействовать с водой? Написать соответствующие уравнения реакций, указать среду и рН полученного раствора.
- 5. Определить пространственную структуру молекулы BrF_5 , иона ClO_4^- .
- 6. Закончить уравнения реакций, подобрать коэффициенты ионно-электронным методом: NaI + MnO $_2$ + H $_2$ SO $_4$ $\rightarrow \dots$ HClO + SO $_2$ + H $_2$ O $\rightarrow \dots$

- 1. При комнатной температуре (25 °C) и нормальном давлении в одном объеме воды растворяется 442 объема HCl. Определить массовую долю HCl в полученном растворе.
- 2. Через склянку с раствором йодида калия было пропущено 2 л воздуха, содержащего хлор. При этом выделился йод массой 91,6 мг. Определить объемную долю хлора в воздухе (в %). Условия нормальные.
- 3. Определить тип химической связи в молекулах CaF_2 , $SbCl_3$, F_2 , I_2O_5 . Ответ обосновать.
- 4. Написать формулы фторида калия, гипохлорита бария, хлората бария, фторида кислорода (II), фторида азота (III). Какие из этих веществ способны взаимодействовать с водой? Написать соответствующие уравнения реакций, указать среду и рН полученных растворов.
- 5. Определить пространственную структуру молекулы ClF_3 , иона ClO_2^- .
- 6. Закончить уравнения реакций, подобрать коэффициенты электронно-ионным методом: $KI + KNO_2 + H_2SO_4 \rightarrow NO + ...$ $HBrO_3 + HBr \rightarrow ...$

- 1. Банку объемом 1 л заполнили хлороводородом при нормальных условиях. Затем банку заполнили доверху водой. Определить молярную концентрацию полученного раствора соляной кислоты.
- 2. К раствору, содержащему 1,17 г хлорида натрия и столько же фторида натрия, прилили раствор нитрата серебра в избытке. Выделившийся осадок отфильтровали, промыли, высушили и взвесили. Масса осадка равна 2,87 г. Какое заключение о растворимости фторида серебра можно сделать на основании этого опыта?
- 3. Определить тип химической связи в молекулах CsI, AlI₃, NI₃, I₂. Ответ обосновать.
- 4. Написать формулы хлорида цезия, перхлората лития, хлорита лития, оксида хлора (VI), фторида хлора (V). Какие из этих веществ способны взаимодействовать с водой? Написать соответствующие уравнения реакций, указать среду и рН полученных растворов.
- 5. Определить пространственную структуру молекулы Cl_2O , иона IO_6^{5-} .
- 6. Закончить уравнения реакций, подобрать коэффициенты электронно-ионным методом: $KI + NaOCl + H_2SO_4 \rightarrow ...$ $NaClO_3 + MnO_2 + NaOH \rightarrow Na_2MnO_4 + ...$

- 1. При 15 °C в 1 л воды растворяется 0,263 г йода. Определить массовую долю йода в полученном растворе и молярную концентрацию раствора. Изменением объема при растворении пренебречь.
- 2. Газовая смесь объемом 100 мл, предназначенная для синтеза хлороводорода, была пропущена через раствор йодида калия. Определить объемную долю каждого газа в исходной смеси, если объем непоглощенного остатка составил 53 мл.
- 3. Определить тип химической связи в молекулах KBr, IBr, PBr₃, Br₂, Ответ обосновать.
- 4. Написать формулы бромида лития, пербромата калия, гипобромита калия, бромида фосфора (III), оксида брома (I). Какие из этих веществ способны взаимодействовать с водой? Написать соответствующие уравнения реакций, указать среду и рН полученных растворов.
- 5. Определить пространственную структуру молекулы IF_3 , иона ClO_3^- .
- 6. Закончить уравнения реакций, подобрать коэффициенты электронно-ионным методом: $NaClO + K_2S + H_2SO_4 \rightarrow \dots \\ KI + KMnO_4 + H_2SO_4 \rightarrow MnSO_4 + \dots$

- 1. При реакции некоторого металла массой 4,6 г с галогеном образуется 11,2 г соли. Зная, что для полного восстановления иона металла из галогенида требуется $12,04 \cdot 10^{22}$ электронов, вычислить относительную атомную массу галогена.
- 2. Закончить уравнения реакций и подобрать коэффициенты электронно-ионным методом: $KClO_3 + H_2SO_4 + H_2C_2O_4 \rightarrow$

$$KI + H_2Cr_2O_4 \rightarrow$$

 $H_3P + Cl_2 + NaClO_3 \rightarrow$

- 3. Какую реакцию среды (pH) будет иметь раствор, полученный в результате сливания одинаковых по массе растворов гидроксида лития и соляной кислоты, взятых в одинаковой молярной концентрации 1 моль/л.
- 4. Йод реагирует с жидким хлором при –40 °C, давая оранжевые кристаллы, содержащие 54,3 % йода. Определить молекулярную формулу соединения и его пространственное строение.
- 5. Определить тип химической связи и пространственное строение для следующих молекул: H_2 , S_2I_2 , BrI_3 , NCl_3 , BrF_5 , IF_7 .
- 6. Определить массовую долю галогеноводорода в растворе, если известно, что после его полного взаимодействия с оксидом одновалентного металла образовался раствор соли с такой же массовой долей, как исходный раствор.
- 7. Написать уравнения возможных реакций взаимодействия веществ Ca(OH)₂, PbO, Na₂O₂.
- 8. При взаимодействии 50 г водного раствора неизвестное вещество с массовой долей 2 %, содержащееся в растворе массой 50 г со стехиометрическим количеством йодоводородной кислоты, образует суспензию йода в воде. При реакции суспензии с избытком водного раствора H₂S образуется сера массой 0,545 г. Определить вещество. Написать уравнения реакций.
- 9. Трифторид хлора при нагревании разлагается на монофторид хлора и фтор. При температуре 900 К степень диссоциации равна 0,891, а при 800 К 0,601. Вычислите ΔH_f^o трифторида хлора, если известно, что ΔH_f^o (CIF) = -50,0 кДж/моль. Опишите пространственное строение CIF $_3$ и продукты, получаемые при фторировании этого соединения. Приведите уравнения гидролиза этих фторидов.

TEMA 2

р-ЭЛЕМЕНТЫ VI ГРУППЫ

Задания для теоретической подготовки

- 1. Строение электронных оболочек атомов серы, селена и теллура. Ковалентность и характерные степени окисления. Изменение радиусов атомов. Энергия ионизации, энергия сродства к электрону и электроотрицательности атомов в подгруппе.
- 2. Сравнительная характеристика физических и химических свойств простых веществ.

- 3. Сероводород, его кислотно-основные и окислительно-восстановительные свойства. Сравнительная характеристика свойств водородных соединений серы, селена и теллура.
- 4. Соединение серы (IV). Оксид серы (IV), его свойства. Сульфиты. Тиосульфаты, их свойства.
- 5. Соединение серы (VI). Серная кислота, ее физические и химические свойства. Другие кислородсодержащие кислоты серы.
- 6. Сравнительная характеристика кислотно-основных и окислительно-восстановительных свойств соединений серы, селена и теллура с высшей степенью окисления.

Задачи для самостоятельного решения

Вариант 1

- 1. Поступающий в продажу сульфид железа должен содержать не менее 97 % FeS. Какой объем сероводорода можно получить из 1 кг такого реактива (в пересчете на нормальные условия)?
- 2. Для восстановления $KMnO_4$, содержащегося в 80 мл 0,02 M раствора, оказалось достаточным пропустить через раствор 17,9 л газа, содержащего SO_2 и не содержащего других восстановителей (объем газа приведен к н.у.). Вычислить содержание SO_2 в газе (в % по объему).
- 3. Написать формулы сульфита натрия, селенита натрия, теллурита натрия, гидроселената натрия, селената натрия. Какие из этих солей подвергаются гидролизу? Написать молекулярные и ионные уравнения реакций гидролиза. Для какой из приведенных солей степень гидролиза наибольшая? Ответ обосновать.
- 4. Закончить уравнения реакций, подобрать коэффициенты:
 - а) методом электронного баланса:

$$H_2S + Cl_2 + H_2O \rightarrow ...$$

б) электронно-ионным методом:

$$KMnO_4 + SO_2 + H_2O \rightarrow MnO_2 + ...$$

 $Cd + H_2SO_{4(PA35)} \rightarrow ...$

$$Cd + H_2SO_{4(KOHII)} \rightarrow ...$$

- 1. Определить объем SO_2 (в пересчете на нормальные условия), который нужно пропустить через раствор $HClO_3$, чтобы восстановить 16 г этой кислоты до HCl.
- 2. Определить объем 0.2 M раствора $K_2Cr_2O_7$, который потребуется для окисления в сернокислом растворе объемом 50 мл сернистой кислоты. Плотность раствора 1,022 г/мл, массовая доля сернистой кислоты (в пересчете на SO_2) 4%.
- 3. Написать формулы сульфита калия, гидросульфита калия, сульфата калия, селенита калия. Какие из этих солей подвергаются гидролизу? Написать молекулярные и ионные уравнения гидролиза. Для какой соли степень гидролиза наибольшая? Ответ обосновать.

- 4. Закончить уравнения реакций, подобрать коэффициенты:
 - а) методом электронного баланса:

$$ZnS + O_2 \rightarrow ...$$

б) электронно-ионным методом:

$$\begin{split} KMnO_4 + Na_2S_2O_3 + KOH &\rightarrow K_2MnO_4 + Na_2S_4O_6 + \dots \\ Hg + H_2SO_{4(PA3b)} &\rightarrow \dots \\ Hg + H_2SO_{4(KOHII)} &\rightarrow \dots \end{split}$$

Вариант 3

- 1. Один объем воды при 0 °C растворяет 80 объемов сернистого газа. Определить массу гидроксида натрия, который нужно прибавить к раствору, полученному насыщением сернистым газом 1 л воды при указанной температуре, чтобы получить среднюю соль.
- 2. Определить объем SO_2 (при нормальных условиях), который потребуется для восстановления $K_2Cr_2O_7$ в сернокислом растворе объемом 100 мл. Плотность раствора 1,04 г/мл, массовая доля $K_2Cr_2O_7$ равна 5,7 %.
- 3. Написать формулы сульфита калия, гидросульфита калия, сульфида калия, гидросульфата калия. Какие из этих солей подвергаются гидролизу? Написать молекулярные и ионные уравнения гидролиза. Для какой из солей степень гидролиза наибольшая? Ответ обосновать.
- 4. Закончить уравнения реакций, подобрать коэффициенты:
 - а) методом электронного баланса:

$$H_2S + SO_2 \rightarrow \dots$$

б) электронно-ионным методом:

$$\begin{aligned} Fe_2(SO_4)_3 + Na_2S_2O_3 &\rightarrow Na_2S_4O_6 + \dots \\ Be + H_2SO_{4(PA3B)} &\rightarrow \dots \\ Be + H_2SO_{4(KOHII)} &\rightarrow \dots \end{aligned}$$

- 1. Из 320 т серного колчедана, содержащего 45 % серы, было получено 405 т серной кислоты (в пересчете на 100%-ю). Вычислить массовую долю выхода кислоты (% использования серы).
- 2. Определить объем H_2S (при 7 °C и 96 к Π а), который следует пропустить через раствор $KMnO_4$, подкисленный серной кислотой, до полного восстановления раствора. Объем раствора $KMnO_4$ 400 мл, плотность 1,04 г/мл, массовая доля $KMnO_4$ 6 %.
- 3. Написать формулы селенида натрия, селенита натрия, селената натрия, гидроселената натрия. Какие из этих солей подвергаются гидролизу? Написать молекулярные и ионные уравнения гидролиза. Для какой из солей степень гидролиза наибольшая? Ответ обосновать.

- 4. Закончить уравнения реакций, подобрать коэффициенты:
 - а) методом электронного баланса:

$$HIO_3 + H_2SO_3 \rightarrow ...$$

б) электронно-ионным методом:

$$H_2TeO_3 + SnCl_2 + HCl \rightarrow SnCl_4 + \dots$$

$$Ni + H_2SO_{4(PA3B)} \rightarrow ...$$

$$Sn + H_2SO_{4(KOHII)} \rightarrow Sn(SO_4)_2 + ...$$

Вариант 5

- 1. При обработке 1,844 г смеси хлорида калия и сульфата калия концентрированной серной кислотой было получено 1,923 г чистого сульфата калия. Определить массовую долю KCl в первоначальной смеси.
- 2. Весь сернистый газ, содержащийся в сернокислом растворе плотностью 1,04 г/мл (с массовой долей SO₂ 7,5 %), был полностью окислен при добавлении 25 мл 6%-го раствора KClO₃. Определить объем раствора, содержащего SO₂.
- 3. Написать формулы сульфида цезия, селенида цезия, гидроселенида цезия, селената цезия. Какие из этих солей подвергаются гидролизу? Написать молекулярные и ионные уравнения гидролиза. Для какой из солей степень гидролиза наибольшая? Ответ обосновать.
- 4. Закончить уравнения реакций, подобрать коэффициенты:
 - а) методом электронного баланса:

$$S + Ba(OH)_2 \rightarrow ...$$

б) электронно-ионным методом:

$$K_2S + K_2Cr_2O_7 + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + \dots$$

$$Zn + H_2SO_{4(PA3B)} \rightarrow \dots$$

$$Zn + H_2SO_{4(KOHIJ)} \rightarrow ...$$

- 1. Написать уравнения реакций взаимодействия серы с галогенами. Назвать продукты реакции. Составить уравнения реакций гидролиза полученных соединений и назвать продукты гидролиза.
- 2. Массовая доля кислорода в кристаллогидрате сульфата одновалентного металла составляет 62,5 %. Установить формулу кристаллогидрата.
- 3. Определить объем раствора серной кислоты с массовой долей 62 % и плотностью 1,52 г/мл, который необходимо добавить к 40%-му олеуму массой 140 г, чтобы получить 10%-й олеум?
- 4. Закончить уравнения реакций:

$$TeO_2 + KMnO_4 + HNO_3 + H_2O \rightarrow$$

$$H_2O + SeO_2 + KMnO_4 \rightarrow$$

$$SO_2 + KMnO_4 + H_2O \rightarrow$$

- 5. Назвать следующие соединения: SOF₂, Ca(FSO₃)₂, (CH₃)₂SO₄, Na₂S₂O₈, H₂S₂O₇, S₂O₆F₂.
- 6. В веществе, состоящем из S, O и F, найдено 27 % серы и 32,3 % фтора. При испарении этого вещества массой 0,212 г образовался газ объемом 40,4 мл (при н.у.) Определить, какое это вещество. Написать Льюисову структуру вещества.

ТЕМА 3 АЗОТ И ЕГО СОЕДИНЕНИЯ

Задания для теоретической подготовки

- 1. Строение электронной оболочки атома азота. Ковалентность. Характерные степени окисления. Свойства атома.
- 2. Азот как простое вещество. Строение молекул, физические и химические свойства азота.
- 3. Соединения азота с отрицательной степенью окисления. Аммиак: строение молекулы, физические и химические свойства. Методы получения аммиака в промышленности и лаборатории. Соли аммония, их термическое разложение. Гидразин, гидроксиламин, азотистоводородная кислота. Строение их молекул и свойства.
- 4. Оксиды азота. Строение молекул и свойства.
- 5. Азотистая кислота: строение молекул и свойства. Нитриты и их свойства. Типы термического разложения нитритов.
- 6. Азотная кислота: строение молекул, физические и химические свойства. Нитраты: их свойства, термическое разложение нитратов.

Задачи для самостоятельного решения

Вариант 1

- 1. Закончить уравнения реакций, подобрать коэффициенты:
 - а) методом электронного баланса:

$$P + HNO_3 \rightarrow ...$$

$$K_2Cr_2O_7 + NO + H_2SO_4 \rightarrow ...$$

 $Mg + HNO_{3 (PA3E_1)} \rightarrow ...$

- 2. Предельная растворимость NH_4Cl и $NaNO_2$ при 20 °C составляет соответственно 37,2 г и 84,5 г на 100 г воды. Сколько граммов насыщенного раствора одной и другой соли потребуется для получения 24 л азота при нагревании смеси растворов? (Объем газа измерен при нормальных условиях.)
- 3. Пользуясь справочными данными, определить, можно ли получить азотную кислоту из азота, кислорода и воды.

- 4. Написать уравнения реакций, протекающих при термическом разложении солей $Al(NO_3)_3$, $(NH_4)_2SiO_3$. Определить, реакцию среды в растворах этих солей. Ответ подтвердить молекулярными и ионными уравнениями реакций.
- 5. Пользуясь методом МО ЛКАО, рассмотреть образование и свойства молекулы азота и молекулярного иона N_2^+ . Дать сравнительную характеристику этих частиц по энергии и длине связи.

- 1. Закончить уравнения реакций, подобрать коэффициенты:
 - а) методом электронного баланса:

$$SO_2 + HNO_3 \rightarrow ...$$

б) электронно-ионным методом:

$$NH_3 + Ca(OCl)_2 \rightarrow N_2H_4 + ...$$

 $Ag + HNO_{3(PA35)} \rightarrow ...$

- 2. Завод вырабатывает в сутки 120 т нитрата аммония. Какой объем аммиака (при н.у.) и какой объем 60%-го раствора HNO_3 плотностью 1,37 г/мл потребляет завод в течение суток?
- 3. Пользуясь справочными данными, определить, можно ли получить HNO_3 из простых веществ:
 - а) при стандартных условиях;
 - б) при высоких температурах.
- 4. Написать уравнения реакций, протекающих при термическом разложении солей $Zn(NO_3)_2$, NH_4Br . Определить реакцию среды в растворах этих солей. Ответ подтвердить молекулярными и ионными уравнениями реакций.
- 5. Пользуясь методом МО ЛКАО, рассмотреть образование и свойства молекулы NO и молекулярного иона NO⁻. Дать сравнительную характеристику этих частиц по энергии и длине связи.

Вариант 3

- 1. Закончить уравнения реакций, подобрать коэффициенты:
 - а) методом электронного баланса:

$$NaNO_3 + MnO_2 + KOH \rightarrow K_2MnO_4 + ...$$

$$Bi + HNO_{3 (PA35)} \rightarrow ...$$

 $NaNO_2 + PbO_2 + H_2SO_4 \rightarrow PbSO_4 + ...$

- 2. Найти массу аммиака, необходимого для получения 5 т 60%-го раствора азотной кислоты, если потери аммиака в производстве составляют 2,8 %.
- 3. Пользуясь справочными данными, определить, возможно ли получение из простых веществ NH_3 , N_2H_4 при стандартных условиях.

- 4. Написать уравнения реакций, протекающих при термическом разложении RbNO₃, NH₄NO₂. Определить реакцию среды в растворах этих солей. Ответ подтвердить молекулярными и ионными уравнениями реакций.
- 5. Пользуясь методом МО ЛКАО, рассмотреть образование и свойства иона CN^- . С какой из молекул N_2 , O_2 или F_2 сходен этот ион по своим свойствам?

- 1. Закончить уравнения реакций, подобрать коэффициенты:
 - а) методом электронного баланса:

$$HNO_3 + H_2S \rightarrow ...$$

б) электронно-ионным методом:

$$Co + HNO_{3 (PA3E)} \rightarrow ...$$

 $N_2H_4 + K_2Cr_2O_7 + H_2SO_4 \rightarrow ...$

- 2. Сколько граммов йода и сколько миллилитров 36%-го раствора HNO₃ плотностью 1,22 г/мл следует взять для получения 1 л 21%-го раствора HIO₃ плотностью 1,21 г/мл?
- 3. Пользуясь справочными данными, определить, можно ли получить нитрат аммония из атмосферного азота, кислорода и воды.
- 4. Написать уравнения реакций, протекающих при термическом разложении солей $Pb(NO_3)_2$, $(NH_4)_2SiO_3$. Определить, реакцию среды в растворах этих солей. Ответ подтвердить молекулярными и ионными уравнениями реакций.
- 5. С помощью метода МО ЛКАО рассмотреть образование и свойства молекулы N_2 и молекулярного иона N_2^- . Дать сравнительную характеристику этих частиц по энергии и длине связи.

Вариант 5

- 1. Закончить уравнения реакций, подобрать коэффициенты:
 - а) методом электронного баланса:

$$AsH_3 + HNO_3 (KOHII) \rightarrow H_3AsO_4 + ...$$

$$Ca + HNO_{3 \text{ (KOHII)}} \rightarrow ...$$

 $N_2H_4 + HNO_2 \rightarrow HN_3 + ...$

- 2. Сколько граммов меди можно перевести в раствор при действии 60 мл 33%-го раствора азотной кислоты плотностью 1,2 г/мл? Какой объем NO выделится при этом (н.у.)?
- 3. Пользуясь справочными данными, определить, может ли гореть в атмосфере NO: а) фосфор; б) железо.
- 4. Написать уравнения реакций, протекающих при термическом разложении солей $Cu(NO_3)_2$, $(NH_4)_2CO_3$. Определить реакцию среды в растворах этих солей. Ответ подтвердить молекулярными и ионными уравнениями реакций.

5. Рассмотреть с помощью метода МО ЛКАО образование и свойства молекулы NO и молекулярного иона NO⁺. Дать сравнительную характеристику этих частиц по энергии и ллине связи.

Вариант 6

1. Закончить уравнения реакций, подобрать коэффициенты:

```
AgNO_3 + Mn(NO_3)_2 + NaOH \rightarrow
KNO_3 + C + S \rightarrow
Al + NaNO_3 + NaOH + H_2O \rightarrow
NH_2OH + HNO_3 \rightarrow
```

- 2. Смесь нитратов натрия и свинца (II) прокалили, а выделившиеся газы пропустили через воду. При этом объем газов уменьшился в 2 раза. Определить состав исходной смеси.
- 3. Написать уравнения реакций термического разложения солей $Cr(NO_3)_2$, $Sr(NO_3)_2$, $Fe(NO_3)_2 \cdot 9H_2O$, $(N_2H_5)NO_3$. Определить реакцию среды в растворах этих солей.
- 4. Используя метод МО ЛКАО, рассмотрите строение NH_3 и NH_4^+ .
- 5. Для полного восстановления 40 мл смеси оксида азота (I) и оксида азота (IV) было использовано 60 мл водорода. После окончания реакции, конденсации паров воды и приведения смеси к н.у. объем смеси составил 45 мл. Определить состав смеси.

ТЕМА 4 ФОСФОР

Задания для теоретической подготовки

- 1. Строение электронных оболочек атомов. Ковалентность. Характерные степени окисления. Изменение свойств атомов в подгруппе.
- 2. Физические и химические свойства простых веществ.
- 3. Водородные соединения.
- 4. Оксиды и кислоты фосфора. Их строение и свойства.
- 5. Окислительно-восстановительные свойства соединений фосфора.

Задачи для самостоятельного решения Вариант 1

- 1. 100 г метафосфорной кислоты растворили в 500 мл воды. Какое вещество образовалось в растворе? Найти массовую долю этого вещества в полученном растворе.
- 2. Вычислить массовую долю P_2O_5 во фторапатите.
- 3. Написать формулы дигидрофосфата магния, гидрофосфата магния, фосфата магния. Написать уравнения для процесса диссоциации этих солей.

- 4. Закончить уравнение реакции $H_3PO_2 + KMnO_4 + H_2SO_4 \rightarrow \dots$ Подобрать коэффициенты электронно-ионным методом.
- 5. Написать уравнения реакции получения простого суперфосфата.
- 6. Определить пространственную структуру молекулы POC1₃. Указать углы между связями.

- 1. Сколько нужно взять фосфорита, содержащего 65 % $Ca_3(PO_4)_2$, чтобы получить 1 т фосфора?
- 2. Содержание фосфора в одном из его оксидов составляет 56,4 % (по массе), плотность пара оксида по воздуху равна 7,6. Найти молекулярную формулу оксида.
- 1 моль гидроксида кальция добавлен в одном случае к раствору, содержащему 1 моль ортофосфорной кислоты, в другом – к раствору, содержащему 2 моля этой же кислоты. Какие соли образуются в каждом случае? Назвать их. Написать уравнения протекающих реакций.
- 4. Закончить уравнение реакции $PH_3 + CuSO_4 + H_2O \rightarrow ...$ Подобрать коэффициенты электронно-ионным методом.
- 5. Написать уравнение реакции получения двойного суперфосфата.
- 6. Определить пространственную структуру молекулы РС1₅. Указать углы между связями.

- 1. Газ, полученный при нагревании 26,4 г сульфата аммония с избытком гидроксида натрия, был поглощен раствором, содержащим 39,2 г ортофосфорной кислоты. Какая соль образовалась при этом? Определить массу соли.
- 2. В состав удобрения «Преципитат» входит соль состава: 29,7 % Ca, 0,735 % H, 22,77 % P, 47,05 % О. Вывести формулу этой соли.
- 3. Какие вещества и в какой последовательности будут получаться при последовательном приливании ортофосфорной кислоты к раствору гидроксида бария? Написать молекулярные и ионные уравнения протекающих реакций, назвать полученные вещества.
- 4. Закончить уравнение реакции $H_3PO_2 + HNO_3 \rightarrow ...$ Подобрать коэффициенты электронно-ионным методом.
- 5. Написать уравнение реакции получения преципитата.
- 6. Определить пространственную структуру молекулы РС1₃. Указать углы между связями.

- 1. Сколько мл 1,125 M раствора гидроксида натрия потребуется для нейтрализации продуктов гидролиза 0,508 г PC1₃?
- 2. Вывести простейшие формулы сульфидов фосфора, если один из них содержит 72 % серы, другой 62,6 % серы, а третий 43,6 % серы по массе.
- 3. Какие вещества образуются при взаимодействии растворов, содержащих 1 моль H₃PO₄ и 1 моль К₂HPO₄? Составить уравнения реакций, назвать каждое вещество.
- 4. Закончить уравнение реакции $H_3PO_2 + Br_2 + H_2O \rightarrow ...$ Подобрать коэффициенты электронно-ионным методом.
- 5. Написать уравнения реакций получения аммофоса, диаммофоса.
- 6. Определить пространственную структуру иона PO_4^{3-} . Указать углы между связями.

Вариант 5

- 1. На нейтрализацию продуктов гидролиза PC1₅ израсходовано 27,5 мл 1,025 М раствора гидроксида натрия. Определить массу PC1₅.
- 2. Костяная мука, применяемая в качестве удобрения, должна по стандарту содержать не менее 40 % оксида фосфора (V). Сколько фосфата кальция содержится в стандартной костяной муке (в % по массе)?
- 3. Раствор, содержащий 1 моль K_3PO_4 , смешали с раствором, содержащим 1 моль KH_2PO_4 , и выпарили. Какое вещество образовалось? Написать уравнение протекающей реакции и назвать каждое из исходных и образовавшихся веществ.
- 4. Закончить уравнение реакции $H_3PO_3 + AgNO_3 + H_2O \rightarrow ...$ Подобрать коэффициенты электронно-ионным методом.
- 5. Написать уравнения реакций, протекающих при прокаливании:
 - а) дигидрофосфата натрия;
 - б) гидрофосфата натрия.
- 6. Определить пространственную структуру молекулы H_3PO_2 . Указать углы между связями.

- 1. Фосфорное удобрение имеет питательную ценность 229 %. Написать формулу этого соединения.
- 2. Определить формулу дигидрофосфата металла, если известно, что массовая доля фосфора составляет в нем 25,8 %.
- 3. Закончить уравнение реакции $P_4 + KOH + H_2O \rightarrow P_2H_4 + PH_3 + \dots$ Подобрать коэффициенты методом полуреакций.

- 4. Определить пространственную структуру следующих кислот: H₃PO₂, H₃PO₃. Назвать эти кислоты. Написать уравнения диспропорционирования кислот. Какая из кислот проявляет большую восстановительную активность?
- 5. При нагревании смеси двух кислот A и Б образуется кислота B и газ Г. При взаимодействии Г с нитратом серебра образуется кислота B. Вещества A–Г отличаются только числом атомов кислорода. В веществе В массовая доля кислорода равна 0,653. Определить вещества и написать уравнения реакций.

TEMA 5

МЫШЬЯК. СУРЬМА. ВИСМУТ

Задания для теоретической подготовки

- 1. Строение электронных оболочек атомов. Ковалентность. Характерные степени окисления. Изменение свойств атомов в подгруппе.
- 2. Физические и химические свойства простых веществ.
- 3. Водородные соединения.
- 4. Оксиды и гидроксиды мышьяка, сурьмы и висмута. Изменение кислотно-основных свойств в подгруппе и в зависимости от степени окисления элемента.
- 5. Окислительно-восстановительные свойства соединений со степенью окисления +3 и +5. Вторичная периодичность.
- 6. Сульфиды и галогениды мышьяка, сурьмы и висмута.

Задачи для самостоятельного решения

Вариант 1

- 1. Найти массу гексагидроксоарсената (III) натрия, содержащегося в растворе, если на окисление его израсходовано 15 мл 0,1 М раствора йода.
- 2. Показать, как построен внешний и предвнешний энергетический уровень атома Sb и иона Sb^{+3} .
- 3. Пользуясь справочными данными, определить, можно ли получить:
 - а) свободный мышьяк;
 - б) свободный висмут
 - восстановлением углеродом из их оксидов с низшей степенью окисления.
- 4. Написать молекулярные и ионные уравнения реакций гидролиза PCl₃, AsCl₃, SbCl₃.
- 5. Закончить уравнения реакций, подобрать коэффициенты:
 - а) методом электронного баланса:

$$Sb + KClO_3 + H_2SO_4 \rightarrow ...$$

$$H[As(OH)_4] + HNO_{3(KOHII)} \rightarrow ...$$

- 1. Раствор ортоарсената натрия прибавили к подкисленному серной кислотой раствору йодида калия. На восстановление выделившегося йода израсходовано 27,2 мл 0,2082 н раствора $Na_2S_2O_3$. Найти массу Na_3AsO_4 , содержащегося в растворе.
- 2. Изотоп 209 Ві бомбардируют α -частицами, при этом ядро висмута испускает 2 нейтрона. Написать уравнение ядерной реакции.
- 3. На основании тепловых эффектов нижеприведенных процессов вычислить ΔH перехода: $As_{(CEPDII)} \rightarrow As_{(ЖЕЛТЫЙ)}$, если

$$2As_{(CEP)} + 3/2O_2 \rightarrow As_2O_3 + 653,0 кДж;$$

$$2As_{(ЖЕЛ)} + 3/2O_2 \rightarrow As_2O_3 + 661,5$$
 кДж.

- 4. Написать формулы метависмутата натрия, дигидроортоарсената натрия, ортоарсената калия, гидроортоарсената лития. Написать уравнения перевода кислых солей в нормальные.
- 5. Закончить уравнения реакций, подобрать коэффициенты:
 - а) методом электронного баланса:

$$As + H_2SO_{4(KOHII)} \rightarrow ...$$

б) электронно-ионным методом:

$$Na_3AsO_4 + NaI + H_2SO_4 \rightarrow ...$$

Вариант 3

- 1. Написать уравнение реакции между сульфидом мышьяка (III) и раствором азотной кислоты. Рассчитать, какой объем $5,62~\mathrm{M}$ раствора азотной кислоты потребуется для растворения $\mathrm{As}_2\mathrm{S}_3$ массой $2,46~\mathrm{r}$.
- 2. Используя справочные данные, рассчитать тепловой эффект для реакции окисления арсина кислородом.
- 3. Закончить уравнение ядерной реакции $^{216}{\rm At} \to ^{212}{\rm Bi} + ?$
- 4. Написать уравнения реакций, с помощью которых можно осуществить следующие превращения:

$$Sb(OH)_3 \rightarrow Na[Sb(OH)_4] \rightarrow Sb(NO_3)_3$$
.

- 5. Закончить уравнение реакции, расставить коэффициенты:
 - а) электронно-ионным методом:

$$NaBiO_3 + HCl_{(KOHII)} \rightarrow ...$$

б) методом электронного баланса:

$$Bi + H_2SO_4$$
 (KOHII) $\rightarrow ...$

- 1. Определить массу оксида мышьяка (III), который может быть окислен до мышьяковой кислоты азотной кислотой, содержащейся в 20 мл 63%-го раствора плотностью 1,4 г/мл.
- 2. Указать, чем отличаются друг от друга атомные ядра изотопов сурьмы: 121 Sb и 123 Sb.
- 3. Исходя из теплового эффекта реакции SbCl₃ + Cl₂ → SbCl₅ − 55,7 кДж, вычислить $\Delta H^0_{f,298}$ (SbCl₅), если ΔH^0_{298} (SbCl₃) = −383,5 кДж/моль.
- 4. Написать формулы метаарсенита кальция, арсенида кальция, тетрагидроксоарсената (III) калия. Написать уравнения реакции получения хлорида мышьяка (III) из тетрагидроксоарсената (III) калия.
- 5. Закончить уравнения реакций, подобрать коэффициенты:
 - а) методом электронного баланса:

$$Bi(OH)_3 + Br_2 + KOH \rightarrow KBiO_3 + ...$$

б) электронно-ионным методом:

$$Na_3AsO_4 + Na_2S + H_2SO_4 \rightarrow ...$$

Вариант 5

- 1. Определить, какой объем 7,2 M раствора серной кислоты потребуется для растворения $Sb(OH)_3$ массой $10~\Gamma$.
- 2. Написать электронные формулы для атома As, иона As^{3+} .
- 3. Пользуясь справочными данными, рассчитать ΔG реакции Sb_2O_5 (тв) + 10HCl (p-p) $\rightarrow SbCl_3$ (тв) + $2Cl_2$ (г)+ $5H_2O$ (ж). Сделать вывод о возможности самопроизвольного протекания реакции.
- 4. Написать уравнения реакций, с помощью которых можно осуществить следующие превращения:

$$As_2O_3 \rightarrow Na[As(OH)_4] \rightarrow As(OH)_3 \rightarrow AsCl_3$$
.

- 5. Закончить уравнения реакций, подобрать коэффициенты:
 - а) методом электронного баланса:

$$SbH_3 + KClO_3 + KOH \rightarrow ...$$

б) электронно-ионным методом:

$$As + K_2Cr_2O_7 + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + ...$$

Вариант 6

1. Закончить уравнения реакций, подобрать коэффициенты методом электронного баланса:

$$H_3SbO_4 + HCl \rightarrow$$
 $NaBiO_3 + H^+ + Mn^{2+} \rightarrow$
 $As + KMnO_4 + H_2SO_4 \rightarrow$
 $As_2O_3 + Zn + HCl \rightarrow$

- 2. При растворении смеси сульфидов сурьмы (III) и (V) массой 1,5 г в избытке концентрированной HNO₃ выделился диоксид азота объемом 1,5 л (при н.у.). Определить массовую долю сульфида сурьмы (III) в смеси.
- 3. Сравните гидролизуемость: AsCl₃ и BiCl₃; SbCl₃ и SbCl₅. Вычислить ΔG^{o}_{298} для процесса гидролиза каждого из этих соединений.
- 4. Закончить уравнения реакций:

$$SbCl_5 + ICl \rightarrow$$

$$AsF_5 + O_2F_2 \rightarrow$$

$$SbF_5 + ClF_3 \rightarrow$$

5. Написать уравнение и рассчитать тепловой эффект реакции образования As_2O_3 из простых веществ, используя термохимические уравнения:

$$As_2O_{3(TB)} + 3H_2O_{(И3Б)} = 2H_3AsO_{3(P)} - 32 \ кДж$$
 $2As_{(TB)} + 3Cl_{2(\Gamma)} = 2AsCl_{3(TB)} + 598 \ кДж$ $AsCl_{3(TB)} + 3H_2O_{(И3Б)} = H_3AsO_{3(P)} + 3HCl_{(P)} + 74 \ кДж$ $H_{2(\Gamma)} + Cl_{2(\Gamma)} = 2HCl_{(\Gamma)} + 184 \ кДж$ $HCl_{(\Gamma)} \xrightarrow{H_2O(u_3\delta)} HCl_{(P)} + 72 \ кДж$ $2H_{2(\Gamma)} + O_{2(\Gamma)} = 2H_2O_{(K)} + 572 \ кДж$

TEMA 6

КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ

Задания для теоретической подготовки

- 1. Основные положения координационной теории Вернера:
 - а) понятие о внешней и внутренней сфере комплексного соединения;
 - б) понятие о комплексообразователе, лигандах;
 - в) координационное число комплексообразователя;
 - г) заряд комплексного иона и степень окисления комплексообразователя.
- 2. Классификация комплексных соединений:
 - а) по заряду комплексного иона;
 - б) по типу лигандов (аквакомплексы, аммиакаты, ацидокомплексы и др.);
 - в) по составу внешней сферы;
 - г) по прочности комплексного иона; понятие о хелатах и двойных солях.
- 3. Номенклатура комплексных соединений.
- 4. Изомерия комплексных соединений. Виды изомерии.
- 5. Строение комплексных соединений с точки зрения теории валентных связей (ВС). Определение пространственной структуры комплексного иона.
- 6. Строение комплексных соединений с точки зрения теории кристаллического поля. Магнитные свойства и окраска комплексных ионов.

7. Электролитическая диссоциация комплексных соединений и ионов. Устойчивость комплексных ионов в растворах. Понятие о константе нестойкости комплексного иона.

Задачи для самостоятельного решения

Вариант 1

- 1. Определить степень окисления и координационное число комплексообразователя в соединениях $[Pt(NH_3)_5Cl]Cl_3$, $K_2[Pt(NO_2)Cl_3]$, $[Pd(NH_3)_5Br_2]$. Назвать эти соединения.
- 2. Написать формулы комплексных соединений:
 - а) пентахлороакварутенат (III) калия;
 - б) хлорид гидроксопентаакваалюминия;
 - в) динитротетраамминкобальт.
- 3. Составить формулы возможных комплексных ионов, в которых комплексообразователем является Cd^{2+} , лигандами NH_3 и CN^- . Координационное число комплексообразователя равно 6.
- 4. Определить тип гибридизации центрального иона и пространственную структуру комплексного иона [Al(OH)₄]⁻ (диамагнетик).
- 5. Объяснить с точки зрения ТКП магнитные свойства и строение комплексного иона $[\mathrm{Ti}(\mathrm{H_2O})_6]^{3+}$ (структура октаэдра). Будет ли этот ион окрашен?
- 6. Показать, как диссоциируют комплексные соединения $[Cu(NH_3)_4](OH)_2$, $K_2[HgI_4]$. Написать выражения для констант нестойкости комплексных ионов.
- 7. Закончить молекулярные уравнения реакций, приводящих к разрушению исходного и образованию нового комплексного иона:

 $K_2[HgI_4] + KCNS \rightarrow ...$

 $[Cu(NH_3)_4](OH)_2 + KCN \rightarrow ...$

Написать ионные уравнения реакций. Пользуясь таблицей констант нестойкости, определить, могут ли самопроизвольно протекать эти реакции.

- 1. Определить степень окисления и координационное число комплексообразователя в соединениях $K_4[Fe(CN)_6]$, $[Co(H_2O)(NH_3)_5]Cl_3$, $[Os(NH_3)_6]$. Назвать эти соединения.
- 2. Написать формулы комплексных соединений:
 - а) бромид бромотриамминплатины (II);
 - б) дицианоаргентат (I) калия;
 - в) гексакарбонилхром.
- 3. Написать координационные формулы соединений платины (II), в которых координационное число комплексообразователя равно четырем, а состав выражается формулами PtCl₂·4NH₃; PtCl₂·2KCl. Назвать полученные соединения.

- 4. Определить тип гибридизации комплексообразователя и пространственную структуру комплексного иона $[SnF_6]^{2-}$ (диамагнетик).
- 5. Объяснить с точки зрения ТКП магнитные свойства и строение комплексного иона $[Fe(CN)_6]^{4-}$. Ион имеет структуру октаэдра. Поле лигандов сильное.
- 6. Показать, как диссоциируют комплексные соединения $Na_3[Ag(S_2O_3)_2]$, $[Cd(NH_3)_4]SO_4$. Написать выражения для констант нестойкости комплексных ионов.
- 7. Закончить молекулярные уравнения реакций, приводящих к разрушению исходного и образованию нового комплексного иона:

```
Na_3[Ag(S_2O_3)_2] + NaCN \rightarrow ...
```

$$[Cd (NH_3)_4] SO_4 + KCN \rightarrow ...$$

Написать ионные уравнения реакций. Пользуясь таблицей констант нестойкости, определить, могут ли протекать эти реакции.

Вариант 3

- 1. Определить степень окисления и координационное число комплексообразователя в соединениях $[Cr(H_2O)_4Cl_2]Cl$, $Na_2[HgBr_4]$, $[Cr(CO)_6]$. Назвать эти соединения.
- 2. Написать формулы комплексных соединений:
 - а) гидроксопентахлороплатинат (IV) натрия;
 - б) перхлорат диамминмеди (I);
 - в) дибромодимминплатина.
- 3. Написать координационные формулы комплексных соединений, состав которых выражается формулами Fe(CN)₃·3KCN; CrCl₃·5NH₃. Координационное число комплексообразователя равно 6. Назвать полученные соединения.
- 4. Определить тип гибридизации комплексообразователя и пространственную структуру комплексного иона [Au(OH)₄]⁻ (диамагнетик).
- 5. Объяснить с точки зрения ТКП магнитные свойства и строение комплексного иона $[Ni(H_2O)_6]^{2+}$. Ион имеет структуру октаэдра. Поле лигандов слабое. Будет ли ион окрашен?
- 6. Показать, как диссоциируют комплексные соединения $[Ni(NH_3)_6]Cl_2$, $K_2[Zn(OH)_4]$. Написать выражения для констант нестойкости комплексных ионов.
- 7. Закончить молекулярные уравнения реакций, приводящих к разрушению исходного и образованию нового комплексного иона:

$$[Ni(NH_3)_6]Cl_2 + KCN \rightarrow ...$$

$$K_2[Zn(OH)_4] + KCNS \rightarrow ...$$

Написать ионные уравнения реакций. Пользуясь таблицей констант нестойкости, определить, могут ли самопроизвольно протекать эти реакции.

- 1. Определить степень окисления и координационное число комплексообразователя в соединениях $K[Au(CN)_2]$, $[Cu(NH_3)_4](NO_3)_2$, $[Rh(NH_3)_3(NO_2)_3]$. Назвать эти соединения.
- 2. Написать формулы комплексных соединений:
 - а) дихлородиаквацинк;
 - б) хлорид гексаамминкобальта (III);
 - в) пентацианонитрозилферрат (III) калия.
- 3. Составить формулы возможных комплексных ионов, в которых комплексообразователем является Pd^{2+} , лигандами NH_3 и $C\Gamma$. Координационное число комплексообразователя равно 4.
- 4. Определить тип гибридизации комплексообразователя и пространственную структуру комплексного иона $\left[\text{Cr}(\text{H}_2\text{O})_6 \right]^{3+}$ (парамагнетик).
- 5. Объяснить с точки зрения ТКП магнитные свойства и строение комплексного иона $[Ni(NH_3)_6]^{2+}$. Ион имеет структуру октаэдра. Поле лигандов сильное. Будет ли ион окрашен?
- 6. Показать, как диссоциируют комплексные соединения $[Co(NH_3)_6]Cl_3$, $K[AuCl_4]$. Написать выражения для констант нестойкости комплексных ионов.
- 7. Закончить молекулярные уравнения реакций, приводящих к разрушению исходного и образованию нового комплексного иона:

 $[Co(NH_3)_6]Cl_3 + NaCN \rightarrow ...$

 $K[AuCl_4] + KCNS \rightarrow ...$

Написать ионные уравнения реакций. Пользуясь таблицей констант нестойкости, определить, могут ли самопроизвольно протекать эти реакции.

- 1. Определить степень окисления и координационное число комплексообразователя в соединениях $[Al(H_2O)_3(OH)_3]$, $[Pt(NH_3)_5Cl]Cl_3$, $K[AuCl_2]$. Назвать эти соединения.
- 2. Написать формулы комплексных соединений:
 - а) гидросульфат сульфатопентаамминкобальта (III);
 - б) гексахлороплатинат (IV) калия;
 - в) тетранитрозилжелезо.
- 3. Написать координационные формулы комплексных соединений, состав которых выражается формулами CrCl₃·6NH₃, CrCl₃·5NH₃. Координационное число комплексообразователя равно 6. Назвать эти соединения.
- 4. Определить тип гибридизации комплексообразователя и пространственную структуру комплексного иона $[Cu(CN)_2]^-$ (диамагнетик).

- 5. Объяснить с точки зрения ТКП магнитные свойства и строение комплексного иона $\left[\text{Fe}(\text{H}_2\text{O})_6 \right]^{3+}$. Ион имеет структуру октаэдра. Слабое поле лигандов. Будет ли ион окрашен?
- 6. Показать, как диссоциируют комплексные соединения $[Cu(NH_3)_2]NO_3$, $K_2[Cu(OH)_4]$. Написать выражения для констант нестойкости комплексных ионов.
- 7. Закончить молекулярные уравнения реакций, приводящих к разрушению исходного и образованию нового комплексного иона:

```
K_2[Cu(OH)_4] + KCl \rightarrow ...

[Cu(NH_3)_2] NO_3 + KCN \rightarrow ...
```

Написать ионные уравнения реакций. Пользуясь таблицей констант нестойкости, определить, могут ли самопроизвольно протекать эти реакции.

- 1. Определить степень окисления и координационное число комплексообразователя в следующих соединениях: $[(NH_3)_5Co(OH)Co(NH_3)_5]Cl_5$, $[(H_3N)Co(OH)_3Co(NH_3)_3](NO_3)_3$, $[Co(NH_3)_4Cl(NO_2)]NO_3$, $[(NH_3)_4Co(NH_2)(OH)Co(NH_3)_4](NO_3)_4$, $[PF_6]$, $[Ni(H_2O)_6]$ $[NiCl_6]$, $H_2[Ti(O_2)(SO_4)_2]$, $[Pt(NH_3)_2(H_2O)(OH)]NO_3$, $[Pd(C_2H_4)_4(dien)]$.
- 2. Написать формулы комплексных соединений:
 - а) тетранитритодиамминкобальтат (III) гексаамминкобальта (III);
 - б) трихлоро(этилен)платинат (II) калия;
 - в) гексафторостибат (V) дифтороброма;
 - г) бис[и-хлоро(тетракарбонил)рутений];
 - д) пентакис(трифторофосфин)железо;
 - е) сульфитотетрамминакварутений.
- 3. Октакарбонил дикобальта Co₂(CO)₈ в растворе имеет две изомерные структуры, одна из которых устойчива при низких температурах, а другая при повышенных (тригональная бипирамида). Определить пространственную структуру этих изомеров.
- 4. Изобразить электронную конфигурацию высокоспинового комплексного иона $\left[\text{Ni}(\text{NH}_3)_6\right]^{2+}$ с точки зрения метода МО. Схему образования МО представить диаграммой.
- 5. Составить уравнения реакций, с помощью которых можно получить бромид бромопентамминкобальта (III) исходя из гексагидрата дибромида кобальта.
- 6. Используя справочные данные, вычислить концентрацию ионов кадмия в 0,1 М растворе тетрайодокадмиата калия.
- 7. Закончить уравнения реакций:

$$\begin{split} &[Fe(H_2O)_6](ClO_4)_3 + Na_2C_2O_4 \to \\ &Au + KCN + O_2 + H_2O \to \\ &[K(H_2O)_6][Cr(H_2O)_6](SO_4)_2 + NaOH \to \\ &[In(H_2O)_6](NO_3)_3 + NaI + NaF \to \end{split}$$

тема 7 УГЛЕРОД. КРЕМНИЙ

Задания для теоретической подготовки

- 1. Строение атомов углерода, кремния. Степень окисления и ковалентность углерода и кремния в соединениях.
- 2. Строение и свойства простых веществ.
- 3. Состав, строение и свойства:
 - а) соединений углерода с водородом и металлами; оксидов углерода, угольной кислоты;
 - б) карбонатов и гидрокарбонатов;
 - в) циановодорода; циановой и тиоциановой кислот.
- 4. Состав, строение и свойства:
 - а) соединений кремния с водородом и металлами;
 - б) диоксида кремния и кремниевых кислот, силикатов и алюмосиликатов;
 - в) цеолиты, их состав и применение.

Задачи для самостоятельного решения

Вариант 1

- 1. Вычислить объем оксида углерода (IV), который образуется из 42 г гидрокарбоната натрия:
 - а) при его нагревании;
 - б) при действии избытка кислоты.
- 2. Определить массовую долю хлороводорода в водном растворе, если на нейтрализацию 50 г такого раствора израсходовали 5,3 г карбоната натрия.
- 3. Исходя из теплового эффекта реакции
 - $CO_2(\Gamma) + 2Mg(TB) \rightarrow 2MgO(TB) + C(TB) + 808 кДж$ и используя справочные данные, вычислить ΔH образования для оксида магния.
- 4. Составить уравнения реакций между:
 - а) кремнеземом и содой;
 - б) кремнеземом и оксидом кальция;
 - в) силикатом натрия и соляной кислотой.
 - Указать, при каких условиях может протекать каждая реакция.
- 5. На основании метода МО ЛКАО построить энергетическую диаграмму для молекулы C_2 . Охарактеризовать свойства молекулы.

Вариант 2

1. При сжигании 16 мл смеси оксида углерода (II) и оксида углерода (IV) в избытке кислорода объем газовой смеси уменьшился на 2 мл. Определить объемную долю каждого газа в смеси (в %).

- 2. Какой объем 0,1 н раствора $Ca(OH)_2$ следует прибавить к 162 г 5%-го раствора $Ca(HCO_3)_2$ для образования нормальной соли?
- 3. Исходя из теплового эффекта реакции $SiO_2(тв) + 3C(тв) \rightarrow SiC(тв) + 2CO(г) + 511 кДж$ и используя справочные данные, вычислить ΔH образования для SiC.
- 4. Какие вещества образуются при взаимодействии:
 - а) сухого аммиака с твердым оксидом углерода (IV);
 - б) оксида углерода (IV) с раствором аммиака? Написать соответствующие уравнения реакций.
- 5. На основании метода МО ЛКАО построить энергетическую диаграмму для молекулы CO. Охарактеризовать свойства молекулы.

- 1. Смесь карбоната и гидрокарбоната натрия массой 146 г нагревали до тех пор, пока не прекратилось уменьшение массы. Остаток после нагревания имеет массу 137 г. Определить массовую долю карбоната натрия в исходной смеси (в %).
- 2. Технический поташ содержит в основном карбонат калия. Для нейтрализации 7 г поташа потребовалось 65 мл 1 н раствора серной кислоты. Определить массовую долю карбоната калия в поташе.
- 3. Используя справочные данные, вычислить, какое количество тепла потребуется для разложения карбоната кальция массой 1 кг.
- 4. Закончить уравнения реакций, написать ионные уравнения:

```
NaHCO<sub>3</sub> + NaOH \rightarrow ...

Ca(HCO<sub>3</sub>)<sub>2</sub> + HCl \rightarrow...

FeCl<sub>3</sub> + Na<sub>2</sub>CO<sub>3</sub> + H<sub>2</sub>O \rightarrow ...
```

5. На основании метода МО ЛКАО построить энергетическую диаграмму для молекулы CN. Охарактеризовать свойства молекулы.

- 1. Рассчитать, какой процент от первоначальной массы составляет остаток, получающийся при нагревании гидрокарбоната натрия.
- 2. К 300 мл 18%-го раствора карбоната натрия плотностью 1,19 г/мл прибавили 500 мл 6%-го раствора серной кислоты плотностью 1,04 г/мл. Определить, какой объем 2,5 М раствора соляной кислоты потребуется для взаимодействия с карбонатом натрия, оставшимся в избытке.
- 3. Рассчитать количество тепла, выделяющегося при сгорании 1 кг угля, содержащего 90 % углерода, если $\Delta H^{o}_{f,298}(CO_{2}) = -394 \text{ кДж/моль}.$

- 4. Какие реакции можно использовать для перевода SiO_2 в растворимые соединения кремния? Написать соответствующие уравнения реакции.
- 5. На основании метода МО ЛКАО построить энергетическую диаграмму для частицы CN^+ . Охарактеризовать свойства молекулы.

- 1. При пропускании воздуха объемом 2 м 3 через раствор гидроксида кальция образовалось 3 г карбоната кальция. Вычислить концентрацию CO_2 в воздухе (г/л) и объемную долю CO_2 .
- 2. Приготовлен раствор, содержащий 27 г $Na_2CO_3 \cdot 10 H_2O$ и 73 г воды. Определить массовую долю карбоната натрия в полученном растворе.
- 3. Используя справочные данные, определить тепловой эффект для реакции горения SiH₄. Сколько тепла выделяется при сгорании 1 м³ этого газа?
- 4. Написать уравнения реакций, с помощью которых можно осуществить следующие превращения:

$$Si \rightarrow SiH_4 \rightarrow SiO_2 \rightarrow H_2SiO_3$$

5. На основании метода МО ЛКАО построить энергетическую диаграмму для молекулы CF. Охарактеризовать свойства молекулы.

- 1. С помощью диаграмм, построенных по методу МО ЛКАО, объяснить, почему возможен отрыв электрона при двух различных значениях потенциала (13,2 и 22,4 В) у метана.
- 2. Объяснить строение H₂CN₂.
- 3. Образец доломита массой 12 г обработали серной кислотой и получили смесь сульфатов массой 16,7 г. Вычислить состав доломита и массовую долю компонентов в доломите.
- 4. При добавлении 10 г соляной кислоты к 10,0 г раствора карбоната натрия образуются продукты реакции массой 19 г. Те же растворы при сливании в обратном порядке дают 19,7 г продуктов. Объяснить результаты экспериментов.
- 5. При сжигании 1 моля вещества X образуется только газ Y объемом 1,344 л (н.у.) с плотностью 1,96 г/л. Определить вещество X.
- 6. Раствор, содержащий 5,34 г соли A, разделили на две равные части. К одной из них прибавили избыток Ba(NO₃)₂, и выпал белый осадок соли B массой 4,66 г, нерастворимый в воде и кислотах. К другой половине добавили избыток NH₄I, и выпал осадок C, который после прокаливания в открытом тигле дает белый осадок Д массой 1,31 г. Определить вещества и написать уравнения реакций.

тема 8 ГЕРМАНИЙ. ОЛОВО. СВИНЕЦ

Задания для теоретической подготовки

- 1. Строение электронных оболочек атомов. Ковалентность. Характерные степени окисления. Изменение свойств по подгруппе.
- 2. Строение, физические и химические свойства простых веществ.
- 3. Водородные соединения.
- 4. Оксиды и гидроксиды. Их строение и свойства. Изменение кислотно-основных свойств по подгруппе и в зависимости от степени окисления элемента.
- 5. Окислительно-восстановительные свойства соединений со степенью окисления +2,+4. Вторичная периодичность.

Задачи для самостоятельного решения

Вариант 1

- 1. При взаимодействии металлического олова массой 23,7 г с избытком соляной кислоты выделяется водород в количестве достаточном, чтобы получить металлическую медь массой 12,7 г восстановлением оксида меди (II). Определить молярную массу эквивалента олова.
- 2. Закончить уравнения реакций, подобрать коэффициенты электронно-ионным методом: $Ge + KOH + KClO_3 \rightarrow ...$ $Sn + HNO_3 + HCl \rightarrow ...$
- 3. Написать уравнения гидролиза $GeCl_2$ и $GeCl_4$. Какое из веществ гидролизовано в большей степени? В растворе какого из веществ рН выше? Ответ обосновать.
- 4. Указать способы получения металлического свинца из $Pb(NO_3)_2$, PbS. Написать соответствующие уравнения реакций.
- 5. Рассчитать растворимость хромата свинца (II) в г/л и в г/100г раствора, если произведение растворимости для этой соли равно $1,8\cdot10^{-14}$. Плотность раствора принять равной плотности воды.

- 1. Вычислить, какой объем 2 М раствора HNO₃ необходим для растворения 1,2 г олова.
- 2. Закончить уравнения реакций, подобрать коэффициенты электронно-ионным методом: $Pb + NaOH_{(P-P)} \rightarrow \dots$ $Sn + H_2SO_{4(KOHID)} \rightarrow \dots$
- 3. Написать уравнения гидролиза K_2GeO_2 и K_2GeO_3 . Какое из веществ гидролизовано в большей степени? В растворе какого из веществ рН выше? Ответ обосновать.

- 4. Раствор содержит ионы Sn^{2+} и Pb^{2+} . При помощи каких реакций эти ионы можно разделить?
- 5. Рассчитать, выпадет ли осадок, если к $1\,\pi$ раствора, содержащему $0{,}001\,\text{моль}$ $Pb(NO_3)_2$, добавить $0{,}5\,\pi$ $0{,}01\,\text{M}$ раствора Na_2S . Произведение растворимости для PbS равно $3{,}6\cdot10^{-29}$.

- 1. Вычислить объем оксида азота (II), который выделяется при растворении олова массой 1,19 г в разбавленной азотной кислоте при температуре 25 °C и давлении 100 кПа.
- 2. Закончить уравнения реакций, подобрать коэффициенты электронно-ионным методом: $Ge + NaOH + H_2O_2 \to \dots \\ Sn + HNO_{3(PA3B)} \to \dots$
- 3. Написать молекулярные и ионные уравнения гидролиза $Sn(NO_3)_2$ и $Pb(NO_3)_2$. Какое из веществ гидролизовано в большей степени? В растворе какого из веществ рН выше? Ответ обосновать.
- 4. Как можно получить сульфиды олова (IV) и олова (II)? Как можно разделить эти сульфиды? Написать соответствующие уравнения реакций.
- 5. Рассчитать, будет ли выпадать осадок при смешивании 100 мл 0,2 М раствора $Pb(NO_3)_2$ с 200 мл 0,2 М раствора соляной кислоты. Произведение растворимости $PbCl_2$ равно $2,13\cdot 10^{-5}$.

Вариант 4

- 1. К сурику Pb_3O_4 массой 5 г добавили 20 мл 60%-го раствора азотной кислоты плотностью 1,3 г/мл. Раствор с полученным осадком разбавили до 2000 мл. Определить массу осадка и молярную концентрацию эквивалентов получившегося раствора.
- 2. Закончить уравнения реакций, подобрать коэффициенты электронно-ионным методом: $Sn + NaOH_{(P-P)} \rightarrow \dots$ $Pb + HNO_{3}_{(P-P)} \rightarrow \dots$
- 3. Написать уравнения гидролиза SnCl₄ и Na₂SnO₃. Какое из веществ гидролизовано в большей степени? В растворе какого из веществ рН выше? Ответ обосновать.
- 4. Закончить уравнения реакций, написать ионные уравнения: $Na_2PbO_2 + HNO_3$ (избыток) $\rightarrow ...$

 $Pb(CH_3COO)_2 + NaOH_{(M3BbITOK)} \rightarrow ...$

5. Рассчитать растворимость $PbCrO_4$ в г/л, если произведение растворимости для этой соли равна 3,6 · 10^{-29} .

- 1. Определить объем 2 M раствора NaOH, который следует прибавить к 200 г 5%-го раствора SnCl₂, чтобы перевести хлорид олова (II) полностью в гидроксокомплекс.
- 2. Закончить уравнения реакций, подобрать коэффициенты электронно-ионным методом:

$$Sn + KOH_{(P-P)} \rightarrow ...$$

 $Pb + H_2SO_{4(KOHII)} \rightarrow ...$

- 3. Написать уравнения гидролиза Pb(NO₃)₂ и Na₂PbO₂. Какое из веществ гидролизовано в большей степени? В растворе какого из веществ рН выше? Ответ обосновать.
- 4. Закончить уравнение реакций, написать ионное уравнение: $Pb(NO_3)_2 + Na_2CO_3 + ... \rightarrow ...$
- 5. Растворимость йодида свинца (II) при комнатной температуре равна 0,058 г на 100 г раствора. Вычислить произведение растворимости этой соли, считая, что плотность раствора равна 1 г/мл.

- 1. Предложить максимально возможное количество способов получения диоксида свинца. Написать уравнения соответствующих реакций.
- 2. При работе свинцового аккумулятора $Pb|H_2SO_4(\rho=1,29\ r/m\pi,\ \omega=38\ \%)|PbO_2$ было израсходовано 13,4 А · ч электричества. Вычислить, на сколько граммов уменьшилась масса анода. Определить тепловой эффект процесса. Написать уравнения реакций, протекающих на аноде и катоде.
- 3. Закончить уравнения реакций:

$$\begin{aligned} &Ge + HNO_3 + HCl \rightarrow \\ &SnO_2 + Na_2CO_3 + S \rightarrow \\ &SnS_2 + HNO_3 + HCl \rightarrow H_2SnCl_6 + \dots \\ &PbO_2 + HNO_3 + H_2O_2 \rightarrow \end{aligned}$$

- 4. Оксид металла темно-коричневого цвета прокалили в атмосфере инертного газа и получили вещество оранжевого цвета, в котором содержание металла 90,68 %. При обработке оранжевого вещества разбавленной азотной кислотой вновь образовался исходный темно-коричневый оксид. Написать уравнения протекающих реакций.
- 5. Константы образования хлоридных комплексов свинца равны $K_1 = 41,7$, $K_2 = 60,62$, $K_3 = 0,40$, $K_4 = 0,05$. Рассчитайте концентрацию всех частиц в насыщенном растворе хлорида свинца, если известно, что растворимость его равна 11,16 г/л. Гидролизом ионов свинца можно пренебречь.

ТЕМА 9 БОР. АЛЮМИНИЙ

Задания для теоретической подготовки

- 1. Электронная структура атомов элементов главной подгруппы III группы.
- 2. Радиусы атомов, ионов, энергия ионизации.
- 3. Максимальная ковалентность атомов, характерные степени окисления в соединениях.
- 4. Бор, алюминий, индий, таллий и их соединения:
 - а) изменение химического характера оксидов и гидроксидов с увеличением степени окисления;
 - б) окислительно-восстановительные свойства соединений в различных степенях окисления;
 - в) зависимость состава продуктов окисления и восстановления соединений от рН раствора, в котором протекает реакция.

Задачи для самостоятельного решения

Вариант 1

- 1. Алюминий, содержащийся в 100 мл раствора калиево-алюминиевых квасцов, был выделен в виде оксида алюминия массой 0,8426 г. Вычислить молярную концентрацию квасцов в растворе.
- 2. Закончить уравнение реакции, подобрать коэффициенты электронно-ионным методом: $Al + KMnO_4 + H_2SO_4 \rightarrow ...$

Привести электродные потенциалы окислителя и восстановителя, сделать вывод о возможности протекания реакции.

- 3. Написать уравнения реакций, с помощью которых можно получить:
 - а) тетрабромоалюминат калия;
 - б) гексагидроксоалюминат цезия.
- 4. Закончить уравнение реакции, написать ионные уравнения: $Al(NO_3)_3 + (NH_4)_2S + H_2O \rightarrow ...$
- 5. Определить пространственную структуру иона [ВН₄]⁻.

Вариант 2

- 1. На реакцию с $Na_2B_4O_7$ · $10~H_2O$ массой 0,3824 г израсходовано 20,5 мл раствора соляной кислоты. Вычислить молярную концентрацию соляной кислоты.
- 2. Закончить уравнение реакции, подобрать коэффициенты электронно-ионным методом: $Tl_2SO_4 + KMnO_4 + H_2SO_4 \rightarrow \dots$

Используя значения электродных потенциалов, сделать вывод о возможности протекания процесса.

- 3. Написать уравнения реакций между:
 - а) тетрагидроксоалюминатом натрия и азотной кислотой;
 - б) метаалюминатом натрия и серной кислотой.

Написать ионные уравнения реакций.

- 4. Один из технических способов получения соды заключается в действии воды и углекислого газа на метаалюминат натрия. Составить уравнение реакции.
- 5. Определить пространственную структуру молекулы димера Al₂Cl₆.

Вариант 3

- 1. Рассчитать массу бора, содержащегося в 1 м^3 3%-го раствора H_3BO_3 плотностью 1,011 г/мл.
- 2. Написать уравнения реакций между алюминием и раствором гидроксида калия, в результате которых образуются:
 - а) тетрагидроксоалюминат калия;
 - б) гексагидроксоалюминат калия.

Привести электродные потенциалы окислителя и восстановителя, сделать вывод о возможности протекания этих реакций.

- 3. Написать уравнения реакций, протекающих:
 - а) при постепенном приливании соляной кислоты к растворам обоих алюминатов (см. задание 2);
 - б) при обработке обоих алюминатов избытком соляной кислоты.

Написать ионные уравнения протекающих реакций.

4. Привести примеры реакций, при которых происходят процессы, выраженные схемами:

$$A1(OH)_3 \rightarrow Al^0 + ...$$

 $Al(OH)_3 + ... \rightarrow AlO_2^- + ...$

5. Определить пространственную структуру молекулы Н₃ВО₃.

Вариант 4

- 1. Рассчитать массу H_3BO_3 и объем 23%-го раствора Na_2CO_3 плотностью 1,25 г/мл, которые необходимо затратить для получения 1 т буры.
- 2. Закончить уравнения реакций, подобрать коэффициенты электронно-ионным методом: $A1 + K_2Cr_2O_7 + H_2SO_4 \rightarrow ...$

Привести электродные потенциалы окислителя и восстановителя, сделать вывод о возможности протекания этой реакции.

3. Написать уравнения гидролиза A1C1₃ по I ступени, указать среду и рН.

- 4. Написать формулы:
 - а) гексаакваалюминий-ион;
 - б) пентагидроксоакваалюминат-анион;

возможности протекания этой реакции.

в) тетрахлороалюминат-ион.

Какой из этих ионов устойчив в кислой среде, щелочной среде?

5. Определить пространственную структуру иона $[BF_4]^-$.

Вариант 5

- 1. Найти массу и количество вещества алюминия, вступающего в реакцию с 86 мл 12%-го раствора HC1 плотностью 1,06 г/мл.
- 2. Закончить уравнения реакций, подобрать коэффициенты электронно-ионным методом: $B + KOH + H_2O_2 \to \dots$ Найти электродные потенциалы окислителя и восстановителя, сделать вывод о
- 3. Написать уравнения гидролиза тетрабората калия и хлората алюминия по I ступени. Написать ионные уравнения реакций.
- 4. Тетрагидридоалюминат лития бурно реагирует с водой, образуя осадок и газ. Написать уравнение реакции.
- 5. Определить пространственную структуру молекулы ВС1₃.

- 1. Описать строение BH_3 с точки зрения метода MO. Объяснить механизм образования BH_4 из BH_3 и H.
- 2. Написать уравнение реакции взаимодействия CuSO₄ и KBH₄.
- 3. Объяснить характер изменения ΔH_f в ряду $BF_3 BCl_3 BBr_3 BI_3$. Написать уравнения гидролиза этих соединений. В чем причина отличия?
- 4. Написать уравнение реакции взаимодействия NaAlO₂ с H₂O и NH₄Cl.
- 5. Определить порядок связи в молекуле BF_3 и составить для этой молекулы Льюисову структуру. Показать образование связи BF_3 с NH_3 (донорно-акцепторный механизм).
- 6. Сплав двух металлов массой 2,00 г в молярном отношении 1:1 без остатка растворили в воде. При этом выделился водород объемом 560 мл (н.у.). Определить состав сплава.

TEMA 10

ШЕЛОЧНЫЕ И ЩЕЛОЧНО-ЗЕМЕЛЬНЫЕ МЕТАЛЛЫ. ЖЕСТКОСТЬ ВОДЫ

Задания для теоретической подготовки

- 1. Строение атомов. Ковалентность. Характерные степени окисления.
- 2. Важнейшие физические и химические свойства простых веществ и важнейших соединений гидридов, оксидов, гидроксидов, пероксидов и солей. Физиологическое действие ионов этих металлов.
- 3. Жесткость воды, ее типы и способы устранения.

Задачи для самостоятельного решения

Вариант 1

- 1. Какой объем 0,1 M раствора AgNO₃ потребуется для осаждения хлорид-анионов из раствора, в котором содержалось 0,272 г карналлита? Карналлит содержал 5 % посторонних примесей.
- 2. При взаимодействии смеси КС1 и NaCl массой 1 г с раствором $H_2[PtCl_6]$ получили малорастворимую соль $K_2[PtCl_6]$ массой 1,5 г. Вычислить массовую долю КС1 в исходной смеси.
- 3. Составить ионное уравнение реакции, протекающей между растворами хлорида магния и карбоната калия.
- 4. Составить уравнения реакций, протекающих при устранении временной жесткости воды посредством добавления извести, если жесткость обусловлена: а) солями кальция; б) солями магния.
- 5. Определить массу соды, которую нужно добавить к 100 л воды для устранения общей жесткости, равной 3,8 моль/л.

- 1. Через раствор, содержащий 60 г NaOH, пропустили углекислый газ, полученный при действии избытка соляной кислоты на 200 г карбоната кальция. Какая соль натрия образовалось? Найти массу этой соли.
- 2. Натрий массой 2,3 г взаимодействует с водой массой 100 г. Найти массовую долю продукта реакции в образовавшемся растворе.
- 3. Написать уравнения реакций, протекающих при пропускании через водный раствор карбоната натрия:
 - а) хлора;
 - б) оксида азота (IV).

- Какие реакции протекают при добавлении к порции жесткой воды каждого из веществ:
 a) Na₂CO₃; б) NaOH; в) Ca(OH)₂?
 Рассмотреть случаи постоянной и временной жесткости воды.
- 5. В 1 л воды содержится гидрокарбонат магния массой 0,146 г. Определить временную жесткость воды.

- 1. Смесь гидроксида натрия и гидроксида калия массой 3,58 г при взаимодействии с соляной кислотой дает 5,04 г хлоридов. Найти массовую долю гидроксида натрия в исходной смеси.
- 2. Каким объемом 35%-го раствора КОН плотностью 1,34 г/мл можно заменить $10 \pi 4 M$ раствора КОН?
- 3. Составить уравнение реакции взаимодействия соды с гашеной известью. Может ли протекать эта реакция? Какое практическое применение она может иметь?
- 4. Какие вещества могут быть применены для снижения жесткости воды, вызванной присутствием сульфата кальция? Написать соответствующие уравнения реакций.
- 5. В 1 л воды содержится 38 мг ионов Mg^{2+} и 108 мг ионов Ca^{2+} . Вычислить общую жесткость воды.

Вариант 4

- 1. Найти массу гидроксида натрия и объем водорода (н.у.), которые образуются при электролизе 1 м^3 20%-го раствора NaCl плотностью 1,151 г/мл.
- 2. Определить объем 1 M раствора HC1, который потребуется для растворения карбоната магния массой 2,25 г.
- 3. Как можно выделить из раствора ионы Ca^{2+} , Ba^{2+} , Sr^{2+} ? Написать молекулярные и ионные уравнения соответствующих реакций.
- 4. Какие вещества могут быть применены для устранения временной жесткости воды, вызванной присутствием в воде гидрокарбоната кальция? Написать соответствующие уравнения реакций.
- 5. При кипячении 250 мл воды, содержащей гидрокарбонат кальция, выпал осадок массой 3,5 мг. Рассчитать временную жесткость воды.

Вариант 5

1. Определить объем водорода, который получается при действии на воду сплава, содержащего натрий массой 4,5 г и калий массой 3,9 г.

- 2. Для определения содержания хлорида натрия в смеси, не содержащей других хлоридов, эту смесь массой 0,8744 г растворили в воде, объем раствора довели до 500 мл. Затем для осаждения хлорид-ионов взяли 25 мл полученного раствора и прибавляли к нему 0,025 М раствор AgNO₃. Всего израсходовано 10 мл раствора AgNO₃. Найти массовую долю NaCl в исходной смеси.
- 3. Раствор содержит смесь сульфатов бериллия и магния. С помощью каких реакций можно разделить ионы Be^{2+} и Mg^{2+} ? Составить молекулярные и ионные уравнения реакций.
- 4. Как, не добавляя химических реагентов, обнаружить присутствие в воде растворенного гидрокарбоната кальция?
- 5. Вычислить временную жесткость воды, если на реакцию с гидрокарбонатом, содержащимся в 100 мл этой воды, потребовалось 5 мл 0,1 н раствора соляной кислоты.

- 1. Чему равна постоянная жесткость воды, если для ее устранения к 50 л воды добавлено 43,2 г буры?
- 2. На титрование образца воды объемом 0,028 л израсходовано $2,4\cdot 10^{-3}$ л 0,1 н HCl. Чему равна карбонатная жесткость воды?
- 3. Жесткость некоторого образца воды обусловливается дикарбонатом железа. При кипячении 0,5 л воды в осадок выпадает 8 мг FeCO₃. Чему равна жесткость воды?
- 4. Карбонат калия невозможно получить по методу Сольве. Объясните почему. Какой способ получения карбоната калия используется в промышленности?
- 5. При взаимодействии смеси карбоната и гидрокарбоната щелочного металла 34,9 г с соляной кислотой выделился CO₂ объемом 17,8 л, измеренным при н.у. Определить состав и массовые доли веществ в исходной смеси.
- 6. В каком массовом соотношении необходимо смешать пероксид натрия с магнием, чтобы выделилось максимальное количество тепла?

TEMA 11

d-ЭЛЕМЕНТЫ VI ГРУППЫ

Задания для теоретической подготовки

- 1. Электронная структура атомов элементов побочной подгруппы VI групп.
- 2. Радиусы атомов, ионов, энергия ионизации.
- 3. Отличие электронных структур и свойств элементов главной и побочной подгрупп VI группы периодической системы?
- 4. Максимальная ковалентность хрома, молибдена, вольфрама. Характерные степени окисления в соединениях.

- 5. Хром и его соединения:
 - а) изменение кислотно-основных свойств соединений хрома в ряду xpom(II) xpom(VI);
 - б) комплексные соединения хрома;
 - в) хромовые кислоты. Условия существования в растворах хроматов и дихроматов;
 - г) окислительно-восстановительные свойства соединений хрома.
- 6. Молибден, вольфрам и их соединения:
 - а) изменение химического характера оксидов и гидроксидов с увеличением степени окисления;
 - б) окислительно-восстановительные свойства соединений в различных степенях окисления;
 - в) зависимость состава продуктов окисления и восстановления соединений от рН раствора, в котором протекает реакция.

Задачи для самостоятельного решения

Вариант 1

- 1. Образец сплава, содержащего железо массой 40 г, растворили в избытке разбавленной серной кислоты. К полученному раствору добавили раствор массой 210 г с массовой долей дихромата калия 14 % до полного окисления соединения железа (II). Определите массовую долю железа в сплаве.
- 2. Написать уравнения реакций, с помощью которых можно осуществить следующие превращения:

$$Cr(OH)_3 \rightarrow [Cr(OH)_6]^{3-} \rightarrow Cr(OH)_3 \rightarrow Cr_2O_3 \rightarrow Ca(CrO_2)_2 \rightarrow Cr_2(SO_4)_3$$

$$\downarrow \qquad \qquad \qquad [Cr(H_2O)_6]^{3+}$$

- 3. Почему при растворении металлического хрома в соляной или разбавленной серной кислоте получаются растворы различной окраски в зависимости от того, проводится ли эта реакция в контакте с воздухом или в среде инертного газа? Ответ подтвердить уравнениями реакций.
- 4. Закончить уравнения реакций и подобрать коэффициенты:
 - а) методом электронного баланса:

$$Fe(CrO_2)_2 + C \rightarrow ...$$

б) электронно-ионным методом:

$$CrCl_3 + CO + Al \rightarrow [Cr(CO)_6] + \dots$$

5. Записать координационные формулы комплексного соединения, имеющего состав CrCl₃ · 3NH₃. Какой вид изомерии возможен для данного соединения? Привести структурные формулы изомеров.

- 1. Найти объем 2 M раствора КОН, объем 3%-го раствора H_2O_2 плотностью 1 г/мл, которые потребуются для реакции с сульфатом хрома (III) массой 200 г.
- 2. Какая соль гидролизована в большей степени $CrCl_2$ или $CrCl_3$? В растворе какой соли pH выше? Ответ обосновать.
- 3. Оксид хрома (III) часто получают прокаливанием дихроматов с древесным углем или серой. Составить уравнения соответствующих реакций.
- 4. Закончить уравнения реакций и подобрать коэффициенты:
 - а) методом электронного баланса:

$$W + HNO_3 + HF \rightarrow ...$$

б) электронно-ионным методом:

$$K_2Cr_2O_7 + CrCl_2 + HCl \rightarrow ...$$

5. Записать координационные формулы комплексных соединений, имеющих состав $CrBr_3 \cdot 3 H_2O$. Какой вид изомерии наблюдается у этих соединений?

Вариант 3

- 1. При термическом разложении технического дихромата аммония массой 54,29 г, содержащего инертные примеси, выделилось 4,45 л газа при температуре 18 °C и давлении 1·10⁵ Па. Определить массовую долю дихромата аммония в исходном образце.
- 2. Почему при сливании водных растворов $Na_3[Cr(OH)_6]$ и NH_4Cl выпадает осадок? Напишите уравнения соответствующих реакций. Указать цвет осадка.
- 3. К оксиду хрома (VI) добавили несколько капель этилового спирта. При этом наблюдается яркая вспышка, твердое вещество изменяет окраску с темно-красного на зеленую и ощущается запах уксусного альдегида. Написать уравнение протекающей реакции.
- 4. Закончить уравнения реакций и подобрать коэффициенты:
 - а) методом электронного баланса:

$$K_2Cr_2O_7 + S \rightarrow (HA\Gamma PEBAHUE) \dots$$

б) электронно-ионным методом:

$$K[Cr(OH)_4] + KClO_3 + KOH \rightarrow ...$$

5. Записать координационные формулы комплексных солей, имеющих состав Mo_2C1_{12} · 6 H_2O . Составьте структурные формулы этих соединений.

Вариант 4

1. Рассчитать массу дихромата калия, который потребуется для приготовления 2 л 0,1 н раствора (раствор будет использован для проведения окислительно-восстановительных реакций в кислой среде).

- 2. Можно ли получить карбонат хрома (III)? Что произойдет при сливании растворов $Cr_2(SO_4)_3$ и Na_2CO_3 ? Написать молекулярные и ионные уравнения реакций.
- 3. Чистый оксид хрома (III) получают восстановлением дихромата натрия углем. При этом образуется также горючий газ и карбонат натрия. Составить уравнение реакции.
- 4. Закончить уравнения реакций и подобрать коэффициенты:
 - а) методом электронного баланса:

$$Cr + KNO_3 + KOH \rightarrow ...$$

б) электронно-ионным методом:

$$Cr(NO_3)_3 + PbO_2 + KOH \rightarrow ...$$

5. Записать координационную формулу комплексного соединения, имеющего состав $Cr(CN)_3 \cdot Co(CN)_3 \cdot 6$ H_2O . Какой вид изомерии может наблюдаться для этого соединения?

Вариант 5

- 1. Сернистого газа объемом 500 мл (н.у.) оказалось достаточным для того, чтобы в сернокислом растворе объемом 500 мл восстановить содержащийся в нем $K_2Cr_2O_7$. Определить молярную концентрацию раствора $K_2Cr_2O_7$.
- 2. Какая соль гидролизована в большей степени K_2CrO_4 или $KCrO_2$? Почему? Написать молекулярные и ионные уравнения гидролиза по первой ступени.
- 3. При нагревании оксида хрома (VI) с серной кислотой выделяется кислород. Составить уравнение протекающей реакции и указать окислитель и восстановитель.
- 4. Закончить уравнения реакций и подобрать коэффициенты:
 - а) методом электронного баланса:

$$Fe(CrO_2)_2 + O_2 + KOH \rightarrow ...$$

б) электронно-ионным методом:

$$K[Cr(OH)_4] + H_2O_2 + KOH \rightarrow ...$$

5. Записать координационную формулу комплексного соединения, имеющего состав $CrCl_3$: 5 H_2O . Дать название этому веществу.

- 1. С помощью метода МО изобразить электронную конфигурацию высоко- и низкоспиновых комплексов Cr (III) с лигандами H_2O и CN^- .
- 2. Определить геометрическое строение и степень окисления комплексообразователя в комплексе $[W_2H(CO)_{10}]$.
- 3. Объяснить, какая из перечисленных кислот самая сильная: $H_2Cr_3O_{10}$, $H_2Cr_2O_7$, H_2CrO_4 .
- 4. При пропускании электрического тока через раствор соли некоторого металла на катоде получено 2,08 г металла, а на аноде 1,344 л газа (н.у.), имеющего плотность по гелию 17,75. Определить формулу соли.

- 5. Дописать исходные вещества в следующих уравнениях реакций
 - $\dots \rightarrow Cr(OH)_3 + K_3PO_4 + K_2HPO_4 + 5H_2O$
 - $\dots \rightarrow Cr(OH)_3 + K_3PO_4 + K_2HPO_4$
 - $\dots \rightarrow Cr_2(SO_4)_3 + SO_2 + HCl + H_2O$
- 6. В колбу поместили металл X массой 0,13 г и прилили 40 мл 20 %-го раствора HCl, закрыли пробкой с манометром. Сначала давление в колбе увеличилось в 1,267 раза, а затем уменьшилось до 1,2 раза. В аналогичном эксперименте с магнием массой 0,2 г давление возросло в 1,876 раза и больше не изменялось. Определить металл X.

ТЕМА 12 d-ЭЛЕМЕНТЫ VII ГРУППЫ

Задания для теоретической подготовки

- 1. Электронная структура атомов элементов побочной подгруппы VII групп.
- 2. Радиусы атомов, ионов, энергия ионизации.
- 3. Отличие электронных структур и свойств элементов главной и побочной подгруппы VII групп периодической системы?
- 4. Максимальная ковалентность марганца, технеция, рения. Характерные степени окисления в соединениях.
- 5. Марганец и его соединения:
 - а) изменение химического характера оксидов и гидроксидов марганца с увеличением степени окисления;
 - б) окислительно-восстановительные свойства соединений марганца (II, III, IV, VI, VII);
 - в) зависимость состава продуктов окисления и восстановления соединений марганца (VII) от pH раствора, в котором протекает реакция.
- 6. Технеций, рений и их соединения:
 - а) изменение кислотно-основных свойств соединений;
 - б) комплексные соединения;
 - в) окислительно-восстановительные свойства соединений.

Задачи для самостоятельного решения

Вариант 1

- 1. Какой объем 0,2 M раствора КМnO₄ потребуется для полного окисления в нейтральной среде сульфита калия, содержащегося в 10 мл 0,2 н раствора?
- 2. Закончить уравнения реакций и подобрать коэффициенты:
 - а) методом электронного баланса:

$$MnCl_2 + KBrO + KOH \rightarrow ...$$

$$KMnO_4 + KI + H_2O \rightarrow ...$$

- 3. Используя значения электродных потенциалов, указать в какой среде соединения Mn (VII) проявляют в наибольшей степени окислительные свойства.
- 4. Закончить уравнения реакций, написать ионные уравнения:

```
Mn(OH)_2 + H_2SO_4 \rightarrow ...

Mn(OH)_2 + H_2S \rightarrow ...
```

$$Mn(OH)_2 + NaOH_{(KOHII)} \rightarrow ...$$

- 1. Рассчитать, каким объемом $0.1\,\mathrm{M}$ раствора $\mathrm{KMnO_4}$ можно заменить $200\,\mathrm{m}$ л 5%-го раствора $\mathrm{K_2Cr_2O_7}$ плотностью $1.04\,\mathrm{r/cm^3}$ в окислительно-восстановительных реакциях, протекающих в кислой среде.
- 2. Закончить уравнения реакций и подобрать коэффициенты:
 - а) методом электронного баланса:

$$MnBr_2 + H_2O_2 + KOH \rightarrow ...$$

б) электронно-ионным методом:

$$KMnO_4 + Cr_2(SO_4)_3 + H_2O \rightarrow ...$$

- 3. Используя значения электродных потенциалов, указать в какой среде (кислой, щелочной или нейтральной) перманганат калия может окислить соляную кислоту до свободного хлора.
- 4. Написать молекулярные и ионные уравнения реакций гидролиза MnSO₄ и Mn₂(SO₄)₃ по первой ступени. Какая из солей в большей степени подвергается гидролизу? Почему?

Вариант 3

- 1. Определить объем SO_2 , который нужно пропустить через 0,1 н раствор перманганата калия объемом 250 мл, чтобы раствор обесцветился.
- 2. Закончить уравнения реакций и подобрать коэффициенты:
 - а) методом электронного баланса:

$$MnO_2 + KNO_3 + K_2CO_3 \rightarrow ...$$

$$KMnO_4 + SnSO_4 + H_2SO_4 \rightarrow ...$$

- 3. Используя значения электродных потенциалов, указать в какой среде (щелочной или нейтральной) легче происходит окисление MnO₂ до соединения Mn (VI).
- 4. Написать молекулярные и ионные уравнения реакций, с помощью которых можно получить:
 - а) хлорид гидроксомарганца (II);
 - б) гидроксид марганца (II);
 - в) гексагидроксоманганат (II) натрия.

- 1. Рассчитать массу перманганата калия, который потребуется при взаимодействии с концентрированным раствором соляной кислоты для получения 10 л хлора при 18 °C и давлении 100 кПа.
- 2. Закончить уравнения реакций и подобрать коэффициенты:
 - а) методом электронного баланса:

$$MnSO_4 + KClO_3 + H_2O \rightarrow ...$$

б) электронно-ионным методом:

$$KMnO_4 + NaNO_2 + Ba(OH)_2 \rightarrow ...$$

- 3. Используя значения электродных потенциалов, указать, в какой среде (щелочной или нейтральной) легче происходит окисление MnO₂ до соединений Mn (VII).
- 4. Написать формулы:
 - а) манганата натрия;
 - б) перманаганата лития;
 - в) гексагидроксоманганата (IV) натрия.

Как из последнего вещества получить соответствующий гидроксид? Написать молекулярные и ионные уравнения реакций.

Вариант 5

- 1. На восстановление перманганата калия, содержащегося в подкисленном серной кислотой растворе, израсходовано 40,7 мл 0,208 н раствора FeSO₄. Определить массу перманганата калия, содержащегося в исходном растворе.
- 2. Закончить уравнения реакций и подобрать коэффициенты:
 - а) методом электронного баланса:

$$MnSO_4 + CaOCl_2 + NaOH \rightarrow ...$$

$$KMnO_4 + MnCl_2 + H_2O \rightarrow ...$$

- 3. Используя электродные потенциалы, определить, какой из ионов MnO_4^- или ReO_4^- является более активным окислителем (считать, что ионы восстанавливаются в нейтральной среде до соединений со степенью окисления +4).
- 4. Написать формулы марганцевой кислоты, марганцовистой кислоты, гидроксида марганца (IV). Написать их структурные (графические) формулы. Привести примеры реакций, с помощью которых можно получить: а) марганцевую кислоту; б) соответствующий ей оксид.

- 1. При действии избытка концентрированной хлороводородной кислоты на смесь оксида марганца (IV) с неизвестным оксидом ЭО₂ массой 4,12 г (в мольном отношении 3:1) выделился газ объемом 72 мл (н.у.). Установите формулу неизвестного оксида и его массовую долю в исходной смеси, если известно, что он в этих условиях не взаимодействует с соляной кислотой.
- 2. Написать уравнения химических реакций:

 $MnO_2 + SO_2 \rightarrow$ $CO_2 + H_2O + K_2MnO_4 \rightarrow$ $K_2MnO_4 + NH_2OH \cdot HCl \rightarrow$

- 3. Объяснить изменение устойчивости в ряду $KMnO_4 KTcO_4 KReO_4$ (т. пл. 250, 540, 550 °C).
- 4. Какую окраску можно ожидать в водных растворах, содержащих Mn^{3+} , если $\Delta = 21~000~\text{cm}^{-1}~$ для иона $[Mn(H_2O)_6]^{3+}$? Вычислить энергию соответствующего электронного перехода.
- 5. Привести пример окислительно-восстановительной реакции, протекающей в кислой среде, в которой одновременно образуются MnO_2 и хлор.

TEMA 13

ЖЕЛЕЗО. КОБАЛЬТ. НИКЕЛЬ

Задания для теоретической подготовки

- 1. Электронные структуры, радиусы, энергии ионизации атомов.
- 2. Характерные степени окисления железа, кобальта и никеля в соединениях.
- 3. Физические свойства простых веществ.
- 4. Взаимодействие железа с разбавленными и концентрированными кислотами на холоду и при нагревании.
- 5. Получение и свойства оксидов и гидроксидов железа (II), кобальта (II), никеля (II). Сравнение отношения этих гидроксидов к кислороду воздуха.
- 6. Получение и свойства гидроксидов и оксидов железа (III), кобальта (III), никеля (III). Сравнение химических свойств гидроксидов и оксидов этих металлов.
- 7. Гидролиз солей этих металлов.
- 8. Окислительно-восстановительные свойства соединений железа, кобальта, никеля.
- 9. Охарактеризовать железо, кобальт, никель как комплексообразователи.

Задачи для самостоятельного решения

Вариант 1

- 1. Определить объем воздуха при температуре $18\,^{\circ}$ С и давлении $100\,$ кПа, который потребуется для окисления гидроксида железа (II) массой $4,6\,$ г в гидроксид железа (III).
- 2. Минерал магнетит в чистом виде содержит 72,36 % железа и 27,64 % кислорода. Вывести формулу магнетита.
- 3. Можно ли получить сульфид железа (III) при взаимодействии:
 - а) твердого $FeCl_3$ и газообразного H_2S ;
 - б) растворов $Fe(NO_3)_3$ и Na_2S ;
 - в) твердых Fe и S?

Ответ обосновать.

- 4. Закончить уравнения реакций и подобрать коэффициенты:
 - а) методом электронного баланса:

$$Fe_2O_3 + KClO_3 + KOH \rightarrow ...$$

б) электронно-ионным методом:

$$Fe(OH)_2 + KMnO_4 + KOH \rightarrow ...$$

- 5. Объяснить с помощью ТКП, почему ионы $[Fe(CN)_6]^{3-}$ и $[Fe(CN)_6]^{4-}$ отличаются по магнитным свойствам. Оба иона имеют структуру октаэдра, сильное поле лигандов.
- 6. Определить тип гибридизации и пространственную структуру иона $[NiCl_4]^{2-}$ (парамагнетик).

Вариант 2

- 1. Химически чистый хлорид железа массой 1 г при взаимодействии с избытком раствора нитрата серебра образовал хлорид серебра массой 2,65 г. Определить степень окисления железа в хлориде.
- 2. Сульфат железа (II) взаимодействует со смесью азотной и серной кислот. Вычислить массу FeSO₄, который необходим для получения оксида азота (II) объемом 224 мл. Условия нормальные.
- 3. Написать уравнения гидролиза $FeCl_2$ и $FeCl_3$. Для какой соли степень гидролиза выше? В растворе какой соли pH выше? Ответ обосновать.
- 4. Закончить уравнения реакций и подобрать коэффициенты:
 - а) методом электронного баланса:

$$FeSO_4 + HNO_3 + H_2SO_4 \rightarrow ...$$

$$Fe_2(SO_4)_3 + H_3PO_3 + H_2O \rightarrow ...$$

- 5. С помощью ТКП определить магнитные свойства ионов $[Fe(H_2O)_6]^{2+}$ (слабое поле лигандов) и $[Co(NO_2)_6]^{3-}$ (сильное поле лигандов). Ионы имеют структуру октаэдра.
- 6. Определить тип гибридизации иона ${\rm Co}^{3+}$ и пространственную структуру комплексного иона ${\rm [Co(CN)_6]}^{3-}$ (диамагнетик).

- 1. Определить массу железного купороса $FeSO_4$ \cdot $7H_2O$, который может быть получен при растворении железа массой 140 г в разбавленной серной кислоте.
- 2. Массовые доли Fe_3O_4 и SiO_2 равны соответственно 80 % и 10 % по массе. Определить массовые доли железа и кремния в руде.
- 3. Что происходит со взвесью малорастворимого карбоната железа (II):
 - а) при насыщении раствора углекислым газом;
 - б) при стоянии на воздухе?

Написать соответствующие уравнения реакций.

- 4. Закончить уравнения реакций и подобрать коэффициенты:
 - а) методом электронного баланса:

FeS + HNO_{3 (KOHII)}
$$\rightarrow \dots$$

б) электронно-ионным методом:

$$Co(OH)_3 + NaNO_2 + H_2SO_4 \rightarrow ...$$

- 5. Объяснить с помощью ТКП, почему ионы $[Co(CN)_6]^{4-}$ и $[Co(CN)_6]^{3-}$ отличаются по магнитным свойствам. Оба иона имеют структуру октаэдра, сильное поле лигандов. Какой из этих ионов более устойчив?
- 6. Определить тип гибридизации атома железа и пространственную структуру пентакарбонилжелеза.

Вариант 4

- 1. Определить объем хлора (условия нормальные), который потребуется для окисления $K_4[Fe(CN)_6]$, содержащегося в 1 т 24%-го раствора.
- 2. Рассчитать массу железа, которое можно получить из одной тонны красного железняка, массовая доля Fe_2O_3 в котором составляет 85 %.
- 3. Закончить уравнения реакций, написать ионные уравнения:

$$\begin{aligned} & FeCl_2 + Na_2CO_{3 \ (P-P)} \rightarrow \dots \\ & FeCl_3 + Na_2CO_{3 \ (P-P)} \rightarrow \dots \end{aligned}$$

4. Закончить уравнения реакций и подобрать коэффициенты:

а) методом электронного баланса:

$$FeSO_3 + H_2SO_4$$
 (KOHII) $\rightarrow \dots$

$$K_2FeO_4 + HCl \rightarrow ...$$

- 5. Объяснить с помощью ТКП магнитные свойства комплексных ионов $[Co(NH_3)_6]^{2+}$ (октаэдр, слабое поле лигандов) и $[Co(NH_3)_6]^{3+}$ (октаэдр, сильное поле лигандов).
- 6. Определить тип гибридизации и пространственную структуру комплексного иона $[Ni(CN)_4]^{2-}$ (диамагнетик).

- 1. В растворе железного купороса FeSO₄ · 7 H₂O железо окислили до железа (III), затем осадили в виде гидроксида и прокалили. Масса прокаленного осадка оказалась равной 0,4132 г. Найти массу железного купороса, содержащегося в исходном растворе.
- 2. Магнитогорская руда содержит минерал магнетит. Массовая доля железа в руде составляет 55 % . Найти массовую долю магнетита в руде.
- 3. Закончить уравнения реакций, написать ионные уравнения:

$$Fe_2O_3 + Na_2CO_{3(CПЛАВЛЕНИЕ)} \rightarrow ...$$

 $Fe_2O_3 + HC1 \rightarrow ...$

- 4. Закончить уравнения реакций и подобрать коэффициенты:
 - а) методом электронного баланса:

$$Fe(OH)_3 + C1_2 + NaOH \rightarrow ...$$

б) электронно-ионным методом:

$$Ni(OH)_3 + HCl \rightarrow ...$$

- 5. Объяснить с помощью ТКП магнитные свойства комплексных ионов $[FeF_6]^4$ (октаэдр, слабое поле лигандов) и $[Fe(CN)_6]^4$ (октаэдр, сильное поле лигандов). Какой из этих ионов более устойчив?
- 6. Определить тип гибридизации и пространственную структуру комплексного иона $\left[\text{Ni}(\text{NH}_3)_6\right]^{2+}$ (парамагнетик).

Вариант 6

- 1. Закончить уравнения реакций и расставить коэффициенты:
 - а) методом электронного баланса:

$$Co(NO_3)_2 \xrightarrow{t}$$

б) электронно-ионным методом:

$$NaHSO_4 + K_2FeO_4 \rightarrow$$

- 2. Кристаллогидрат MeSO₄ · 7 H_2 O массой 6,95 г растворили в 49,05 мл воды. Массовая доля вещества составила 6,78 %. О каком металле идет речь?
- 3. В растворе хлорида железа (III) растворили медный шарик и обнаружили, что после уменьшения диаметра шарика вдвое прореагировала половина хлорида железа (III). Рассчитать, во сколько раз молярная концентрация прореагировавшего хлорида железа будет отличаться от молярной концентрации хлорида железа (III) к тому моменту, когда весь шарик растворится.
- 4. Рассчитать, в какую сторону сместится равновесие в реакции $[Fe(CN)_6]^{4-} + [Mo(CN)_8]^{3-} \rightarrow [Fe(CN)_6]^{3-} + [Mo(CN)_8]^{4-}$ при изменении pH среды.
- 5. При нагревании гексагидрата кобальта происходит изменение окраски

$$CoCl_2 \cdot 6H_2O \xrightarrow{49^{\circ}C} CoCl_2 \cdot 4H_2O \xrightarrow{58^{\circ}C} CoCl_2 \cdot 2H_2O \xrightarrow{140^{\circ}C} CoCl_2$$
 розовая розовая красно-фиолетовая синяя Описать структуру этих веществ.

6. Объяснить состав и строение $Ni(CO)_4$ и $Ni(NH_3)_6^{2+}$ с позиций метода МО ЛКАО.

Тема 14

d-ЭЛЕМЕНТЫ І ГРУППЫ

Задания для теоретической подготовки

- 1. Электронная структура атомов элементов побочной подгруппы І групп.
- 2. Радиусы атомов, ионов, энергия ионизации.
- 3. Отличие электронных структур и свойств элементов главной и побочной подгрупп І группы периодической системы?
- 4. Максимальная ковалентность атомов, характерные степени окисления в соединениях.
- 5. Медь, серебро, золото и их соединения:
 - а) изменение химического характера оксидов и гидроксидов с увеличением степени окисления;
 - б) окислительно-восстановительные свойства соединений в различных степенях окисления;
 - в) зависимость состава продуктов окисления и восстановления соединений от рН раствора, в котором протекает реакция.

Задачи для самостоятельного решения

Вариант 1

- 1. Найти объем 0,01 M раствора $AgNO_3$, который потребуется для взаимодействия с 1 мл 10%-го раствора HBr плотностью 1,073 r/мл.
- 2. Один из видов латуни содержит 60 % меди и 40 % цинка и представляет собой в основном соединение меди с цинком. Вывести формулу этого соединения.
- 3. Медный купорос обработали раствором соды. Осадок прокалили. Полученный при этом черный порошок нагрели с углем. Напишите уравнения протекающих реакций.
- 4. Напишите молекулярные и ионные уравнения реакций, протекающих при постепенном добавлении раствора цианида калия к раствору нитрата серебра.
- 5. Определите, будет ли происходить разрушение комплексного иона с образованием малорастворимого соединения: $[Ag(S_2O_3)_2]^{3-} + \Gamma \rightarrow \dots$
- 6. Закончить уравнение реакции, подобрать коэффициенты электронно-ионным методом: $H[AuCI_4] + H_2O_2 + KOH \rightarrow ...$

- 1. Определить объем 6%-го раствора HCI плотностью 1,03 г/мл, который следует прибавить к 400 мл 0,05 М раствора AgNO₃ для полного осаждения хлорида серебра.
- 2. Сплав меди с алюминием представляет собой химическое соединение, содержащее 12,3 % Al. Вывести формулу этого соединения.

- 3. Из руд, содержащих медь в виде сульфида меди (I), по одному из способов медь выплавлялась так:
 - а) руда обжигалась при доступе воздуха, в результате чего сульфид меди (I) преобразовывался в оксид меди (I);
 - б) обожженная руда смешивалась с необожженной, и смесь прокаливалась без доступа воздуха, в результате чего получалась свободная медь.

Напишите уравнения протекающих реакций.

- 4. При добавлении к раствору $AgNO_3$ разбавленного раствора аммиака образуется бурый осадок, растворяющийся в избытке реактива. Написать молекулярные и ионные уравнения протекающих реакций.
- 5. Определить, будет ли происходить разрушение комплексного иона с образованием малорастворимого соединения:

$$[Ag(NH_3)_2]^+ + Br^- \rightarrow \dots$$

6. Закончить уравнение реакции, подобрать коэффициенты электронно-ионным методом: $H_3PO_2 + CuSO_4 + H_2O \rightarrow ...$

Вариант 3

- 1. Найти массу 5%-го раствора $AgNO_3$, которая потребуется для реакции обмена со 120 мл 0.6 н раствора $AlCl_3$.
- 2. В сплаве меди с оловом на каждый атом олова приходится 5 атомов меди. Найти массовую долю каждого металла в сплаве.
- 3. Имеется раствор железного купороса с примесью медного купороса. Каким простым способом можно получить из него раствор железного купороса без примеси медного?
- 4. Как реагируют соли меди (II) с водным раствором аммиака:
 - а) при избытке Cu^{2+} ;
 - б) при избытке аммиака.

Написать молекулярные и ионные уравнения реакций.

5. Определите, будет ли происходить разрушение комплексного иона с образованием малорастворимого соединения:

$$[Ag(CN)_2]^- + S^{2-} \rightarrow \dots$$

6. Закончить уравнение реакции, подобрать коэффициенты методом электронного баланса: $Cu_2S + HNO_{3(KOHIL)} \rightarrow \dots$

Вариант 4

1. К раствору медного купороса прибавили избыток щелочи. Раствор с выпавшим осадком прокипятили, затем осадок отфильтровали, промыли, прокалили и взвесили. Масса оказалась равной 0,824 г. Найти массу CuSO₄ · 5H₂O, содержащегося в растворе.

- 2. Медь образует с золотом химическое соединение, в котором на один атом меди приходится один атом золота. Определить массовую долю меди и золота в этом соединении.
- 3. Какое соединение образуется при кипячении хлорида меди (II) с медными стружками в солянокислом растворе? После разбавления полученного раствора водой выпадает осадок. Напишите уравнения протекающих реакций.
- 4. Закончить уравнения реакций, написать ионные уравнения реакций:

$$AuCl_3 + KCl \rightarrow ...$$

$$CuCl + HCl \rightarrow ...$$

5. Определите, будет ли происходить разрушение комплексного иона с образованием малорастворимого соединения:

$$[Ag(NO_2)_2]^- + Cl^- \rightarrow \dots$$

6. Закончить уравнение реакции, подобрать коэффициенты методом электронного баланса: $CuI + H_2SO_4 \rightarrow ...$

Вариант 5

- 1. Определить, какой объем 34%-го раствора HNO_3 плотностью 1,21 г/мл потребуется для растворения 10 г серебра.
- 2. При нагревании 1,023 г кристаллогидрата хлорида меди (II) получено 0,807 г безводной соли. Вывести формулу кристаллогидрата.
- 3. При пропускании водорода через раствор соли меди (II) изменений не наблюдается, но если при этом в раствор опустить пластинку платины, то она покрывается красным налетом, а раствор обесцвечивается. Платина при этом химически не изменяется. Какую она играет роль? Напишите уравнение протекающей реакции.
- 4. Напишите молекулярное и ионное уравнение реакции, протекающей при добавлении раствора тиосульфата натрия к раствору хлорида серебра.
- 5. Определите, будет ли происходить разрушение комплексного иона с образованием малорастворимого соединения:

$$[Ag(S_2O_3)_2]^{3-} + S^{2-} \rightarrow ...$$

6. Закончить уравнение реакции, подобрать коэффициенты электронно-ионным методом: $AgNO_3 + H_2O_2 + NaOH \rightarrow ...$

Вариант 6

1. Закончить уравнения реакций и подобрать коэффициенты электронно-ионным методом:

$$Cu(CH_3COO)_2 + H_2O + N_2H_4 \cdot H_2O \rightarrow$$

$$Cu(OH)_2 + NaOH + Na_2S_2O_8 \rightarrow$$

$$CuCl_2 + H_3PO_2 + H_2O \rightarrow$$

2. Как объяснить различие в растворимости галогенидов меди?

- 3. Железную пластинку массой 2,00 г погрузили в 50 г 2%-го раствора CuSO₄. Через некоторое время пластинку вынули, высушили и взвесили, масса ее стала 2,04 г. Рассчитать состав раствора после удаления металлической пластинки.
- 4. После растворения серебра в 63%-й азотной кислоте массовая доля в образовавшимся растворе снизилась до 53 %, а после дополнительного растворения меди уменьшилась до 43 %. Вычислить массовые доли солей в конечном растворе.
- 5. Привести пример уравнения химической реакции между водными растворами соли и кислоты, для которого невозможно написать ионное уравнение.
- 6. Некоторый металл массой 11,2 г обработали избытком очень разбавленного раствора HNO₃. Раствор выпарили и сухой остаток нагрели в избытке щелочи. При этом выделился газ объемом 0,56 л (н.у.). Установить формулу металла.

ТЕМА 15 **d-ЭЛЕМЕНТЫ II ГРУППЫ**

Задания для теоретической подготовки

- 1. Электронная структура атомов элементов побочной подгруппы ІІ группы.
- 2. Радиусы атомов, ионов, энергия ионизации.
- 3. Отличие электронных структур и свойств элементов главной и побочной подгрупп II группы периодической системы?
- 4. Максимальная ковалентность атомов, характерные степени окисления в соединениях.
- 5. Цинк, кадмий, ртуть и их соединения:
 - а) изменение химического характера оксидов и гидроксидов с увеличением степени окисления;
 - б) окислительно-восстановительные свойства соединений в различных степенях окисления;
 - в) зависимость состава продуктов окисления и восстановления соединений от рН раствора, в котором протекает реакция.

Задачи для самостоятельного решения

- 1. Рассчитать массу цинкового купороса $ZnSO_4$ $^{\circ}7H_2O$, которую можно получить при взаимодействии цинка с 500 мл 20%-го раствора серной кислоты плотностью 1,14 г/мл.
- 2. Один металл аналитически можно открыть следующим образом: каплю раствора его соли помещают на чистую медную пластинку. На пластинке появляется при этом серебристо-белое пятно, бесследно исчезающее при нагревании. Металл относится ко II группе периодической системы. Какой это металл? Напишите уравнение протекающей реакции.

- 3. Закончить уравнение реакции, написать ионное уравнение реакции: $ZnO + NaOH_{(PACTBOP)} \rightarrow ...$
- 4. Закончить уравнение реакции, подобрать коэффициенты методом электронного баланса: $HgS + HCl + HNO_3 \rightarrow \dots$
- 5. Используя количественные данные, определить, будет ли протекать реакция при сливании растворов, содержащих: а) $[HgL_1]^{2-}$ и Cl^- ; б) $[HgCl_4]^{2-}$ и Γ .

- 1. Рассчитать объем $0.1 \, \text{M}$ раствора SnCl_2 , который нужно прибавить к $200 \, \text{мл} \, 0.15 \, \text{M}$ раствора сулемы HgCl_2 , чтобы восстановить ее до металлической ртути.
- 2. В раствор, содержащий по 0,01 моль следующих солей: AgNO₃, Zn(NO₃)₂, Hg(NO₃)₂, Al(NO₃)₃, Cu(NO₃)₂, Fe(NO₃)₂, вводится одинаковыми порциями (по 0,01 моль) металлическое железо. После каждой добавки железа раствор тщательно встряхивают. Какой (какие) металлы и в каком количестве (в молях) выделятся из раствора после первой добавки железа, после второй и т.д.? Написать уравнения протекающих реакций. Ответ подтвердить количественными данными.
- 3. Раствор содержит ионы Zn^{2+} и Hg^{2+} . Как их можно разделить? Написать молекулярные и ионные уравнения протекающих реакций.
- 4. Закончить уравнения реакций, подобрать коэффициенты электронно-ионным методом:

$$ZnO + H_2SO_4$$
 (KOHII) $\rightarrow ...$

5. Рассчитать, будет ли выпадать осадок при приливании к $0.02~\mathrm{M}$ раствору $\mathrm{CdCl_2}$ такого же объема $0.002~\mathrm{M}$ раствора ($\mathrm{NH_4}$)₂S. Произведение растворимости для образующегося малорастворимого вещества равно $1.2~\mathrm{10^{-28}}$.

Вариант 3

- 1. К 400 г цинка прибавили 2 л 20%-го раствора HCl плотностью 1,1 г/мл. Рассчитать объем выделившегося водорода при температуре 37^{0} С и давлении 105 кПа, а также массу цинка, оставшегося в избытке.
- 2. Между какими из попарно взятых веществ, формулы которых даны ниже (электролит берется в виде водного раствора), произойдет химическая реакция:

 $Al + Hg(NO_3)_2$;

 $Zn + MgCl_2$;

Fe + CuCl₂?

Написать уравнения протекающих реакций. Ответ подтвердить количественными данными.

3. Закончить уравнение реакции, написать ионное уравнение:

 $Na_2[Zn(OH)_4] + HCl \rightarrow ...$

- 4. Закончить уравнения реакций, подобрать коэффициенты электронно-ионным методом: $Zn + HNO_{3 \ (PA3b)} \rightarrow \dots$
- 5. Определить концентрацию ионов Hg^{2+} в насыщенном растворе HgI_2 ($\Pi P(HgI_2) = 2,7 \cdot 10^{-12}$). Используя количественные данные, покажите, будет ли протекать растворение HgI_2 в избытке раствора KI.

- 1. Найти объем 8 M раствора КОН, который способен прореагировать с 250 г ZnO, содержащего 18,6 % примесей, нерастворимых в щелочах.
- 2. Между какими из попарно взятых веществ, формулы которых даны ниже (электролит берется в виде водного раствора), произойдет химическая реакция:

 $Cd + H_2 SO_4$;

 $Zn + MgCl_2$;

Zn + HBr?

Написать уравнения протекающих реакций. Ответ подтвердить количественными данными.

3. Закончить уравнение реакции, написать ионное уравнение:

 $K_2[Zn(OH)_4] + HNO_3 (N3BITOK) \rightarrow ...$

- 4. Закончить уравнение реакции, подобрать коэффициенты электронно-ионным методом: $Zn + HNO_{3 \text{ (КОНЦ)}} \rightarrow \dots$
- 5. Растворимость HgI_2 в воде равна 0,040 г/л. Найти произведение растворимости соли.

- 1. Цинковая руда содержит 30 % ZnS. Рассчитать массу металлического цинка и массу 98%-го раствора серной кислоты, которые теоретически можно получить из 1 т этой руды.
- 2. Один из способов очистки ртути от примеси металлов (например, цинка и олова) заключается в том, что ртуть взбалтывают с раствором сульфата ртути (II). На чем основан этот способ очистки? Написать уравнения протекающих реакций. Ответ подтвердить количественными данными.
- 3. Закончить уравнение реакции, написать ионное уравнение: $[Cd(NH_3)_4](OH)_2 + H_2SO_4$ (избыток) $\rightarrow ...$
- 4. Закончить уравнение реакции, подобрать коэффициенты электронно-ионным методом: $Zn + KOH_{(PACTBOP)} \rightarrow \dots$
- 5. Определить концентрацию ионов Hg^{2+} в насыщенном растворе HgS (произведение растворимости соли найти в справочнике). Найти число единичных ионов Hg^{2+} в 1 л насыщенного раствора HgS. В каком объеме раствора содержится 1 ион Hg^{2+} ?

- 1. Исходя из стандартных электродных потенциалов, вычислить произведение растворимости каломели (Hg_2Cl_2) при стандартных условиях и константу равновесия ее диспропорционирования.
- 2. Смесь медного и цинкового купороса содержит 40 % связанной воды. Рассчитать массовую долю каждого купороса в смеси.
- 3. Написать уравнения химических реакций, с помощью которых можно разделить смесь солей: ZnCl₂, CdCl₂, HgCl₂.
- 4. Какой из ионов Cd_2^{2+} или Hg_2^{2+} более устойчив и почему?
- 5. Выпадет ли осадок, если через 0,001 M раствор хлорида кадмия и 0,2 M раствор HCl пропустить сероводород до насыщения (концентрация H_2S составляет 0,1 моль/л)?
- 6. Закончить уравнения химических реакций. Расставить коэффициенты методом электронно-ионного баланса:

$$\begin{aligned} &CdCl_2 + HCl + H_2O + CO(NH_2)_2 \quad ^p \rightarrow \\ &HgCl_2 + NaCN + NH_3 + SeO_2 + SO_2 + H_2O \rightarrow \\ &\dots \rightarrow ZnCO_3 + K_2SO_4 + K_2CO_3 + CO_2 + H_2O \end{aligned}$$

Коллоквиум

Общие закономерности периодической системы. Свойства элементов главных подгрупп.

Общая характеристика атомов s- и p-элементов

- 1. Строение атомов, ковалентность, характерные степени окисления.
- 2. Изменение свойств атомов (r_{ar} , I, E_{cp} , Θ_o).
- 3. Вторичная периодичность. Устойчивые степени окисления.

Физические свойства простых веществ

- 4. Типы кристаллических решеток простых веществ.
- 5. Физические свойства простых веществ.

Химические свойства простых веществ.

- 6. Взаимодействие с элементарными окислителями.
- 7. Окисление ионом водорода.
- 8. Взаимодействие с кислотами сильными окислителями.
- 9. Взаимодействие с растворами щелочей.

Водородные соединения элементов главных подгрупп

- 10. Методы получения водородных соединений.
- 11. Физические свойства водородных соединений.
- 12. Кислотно-основные свойства водородных соединений.
- 13. Окислительно-восстановительные свойства и термическая устойчивость водородных соединений.

Оксиды и гидроксиды элементов главных подгрупп

- 14. Характер химической связи в оксидах и гидроксидах.
- 15. Термодинамические свойства оксидов и гидроксидов.
- 16. Взаимодействие оксидов с водой.
- 17. Кислотно-основные свойства оксидов и гидроксидов.
- 18. Объяснение кислотно-основных свойств гидроксидов в курсе химии средней школы.
- 19. Окислительно-восстановительные свойства оксидов и гидроксидов.

Галогениды элементов главных подгрупп

- 20. Характер химической связи в галогенидах.
- 21. Гидролиз галогенидов.

ТАБЛИЦА ВАРИАНТОВ РАБОТ ПО ТЕМАМ

Галогены и их соединения Хлор и хлороводород. Кислородные соединения хлора

№ варианта					Ном	ер опыт	ra .			
I	1a(2)	1б	2a	3	5a	5б	5в(1)	5r(1)	6a	7a
II	1a(1)	16	2б	3	5a	5б	5в(2)	5r(2)	6б	7б
III	1a(2)	1б	2в	3	5a	5б	5в(3)	5д	6в	7в
IV	1a(1)	1б	2a	3	5a	5б	5в(1)	5r(1)	6г	7г
V	1a(2)	1б	4	3	5a	5б	5в(2)	5r(2)	6a	8
VI	1a(1)	16	2б	3	5a	5б	5в(3)	5д	6б	7a
VII	1a(2)	16	2в	3	5a	5б	5в(1)	5r(1)	6в	7б
VIII	1a(1)	1б	4	3	5a	5б	5в(2)	5r(2)	6г	8

Бром, иод и их соединения

№ варианта					Ном	ер опыт	ra				
I	9б	9г(1)	10a	10б	10в	11a	12	13a	136	15	17
II	9a	9в	10a	10б	10в	11б	12	13a	13б	15	17
III	9б	9r(2)	10б	10в	11д	11в	12	14	15	16	17
IV	96	9г(1)	10б	10в	11д	11г	12	14	15	16	17
V	9a	9в	10a	10б	10в	11a	12	14	15	16	17
VI	96	9г(1)	10б	10в	11д	116	12	13a	136	15	17
VII	96	9r(2)	10б	10в	11д	11в	12	14	15	16	17
VIII	9a	9б	10a	10б	10в	11г	12	13a	136	15	17

Опыт 11д и 17 выполняются как демонстрационные.

Сера и ее соединения Сера. Сероводород. Сульфиды

№ варианта	Номер опыта									
I	1a	2	3(1)	4a(1)	4б					
II	16	6	3(2)	4a(2)	4б					
III	1a	2	3(3)	4a(3)	4б					
IV	1б	6	3(1)	5a	5б					
V	1a	2	3(2)	4a(1)	4б					
VI	1б	2	3(3)	4a(2)	4б					
VII	1a	6	3(1)	4a(3)	4б					
VIII	1б	2	3(2)	5a	5б					

Кислородные соединения серы

№ варианта	Номер опыта											
I	7б	8a	9a	10	12a(1)	126(1)	12в(1)	12г(1)	13	14(1)		
II	76	8б	9б	11	12a(2)	126(2)	12в(2)	12г(2)	13	14(2)		
III	76	8a	9в	10	12a(1)	126(3)	12в(2)	12г(1)	13	14(3)		
IV	7б	8б	9г(1)	11	12д	126(4)	12в(2)	12г(2)	13	14(4)		
V	7б	8a	9г(2)	10	12д	126(5)	12в(2)	12г(1)	13	14(5)		
VI	7б	8б	9г(3)	11	12д	126(1)	12в(1)	12г(2)	13	14(1)		
VII	76	8a	9г(4)	10	12д	126(2)	12в(2)	12г(1)	13	14(2)		
VIII	7б	8б	9в	11	12a(1)	126(3)	12в(2)	12г(2)	13	14(3)		

Азот и его соединения Азот и его водородные соединения

№ варианта		Номер опыта										
I	1	2a	3	4a	6a(1)	6б(2)						
II	1	26	3	46	6a(2)	6б(3)						
III	1	2в	3	4в	6a(3)	6б(4)						
IV	1	2a	3	4a	6a(4)	6б(1)						
V	1	26	3	46	6a(1)	6б(2)						
VI	1	2a	3	4в	6a(2)	6б(3)						
VII	1	2б	3	5	6a(3)	6б(4)						
VIII	1	2a	3	4a	6a(4)	6б(1)						

Опыт 2в выполняется как демонстрационный.

Кислородные соединения азота

№ варианта		Номер опыта											
I	7	8	9a	10	11a	12a(1)	126(1)	13	14a(1)	14в(1)	14д		
II	7	8	9б	10	116	12a(2)	126(2)	15a	14a(2)	14в(2)	14e(1)		
III	7	8	9в	10	11a	12a(1)	126(3)	15б(1)	14a(1)	14в(1)	14e(2)		
IV	7	8	9г	10	116	12a(2)	126(4)	156(2)	14г	14б	15a		
V	7	8	9a	10	11a	12a(1)	126(1)	15a	14a(2)	14в(2)	156(1)		
VI	7	8	9б	10	116	12a(2)	126(2)	15б(1)	14a(1)	14в(1)	156(2)		
VII	7	8	9в	10	11a	12a(1)	126(3)	156(2)	14г	14б	14д		
VIII	7	8	9г	10	116	12a(2)	126(4)	13	14a(2)	14в(2)	15a		

Фосфор и его соединения

№ варианта		Номер опыта											
I	1	2	3a	3б	3в	3г	5a						
II	4a	2	3a	3б	3в	3г	5б						
III	4б	2	3a	3б	3в	3г	5в						
IV	6a	2	3a	3б	3в	3г	5a						
V	6б	2	3a	3б	3в	3г	5б						
VI	1	2	3a	3б	3в	3г	5в						
VII	4a	2	3a	3б	3в	3г	5a						
VIII	4б	2	3a	3б	3в	3г	56						

Мышьяк, сурьма, висмут и их соединения

№ варианта	Номер опыта									
I	1a	26	3	7	5	8	12			
II	1б	2a	6	4	11	9	12			
III	1a	26	10	7	5	8	12			
IV	1б	2a	3	4	11	9	12			
V	1a	2б	6	7	5	8	12			
VI	1б	2a	10	4	11	9	12			
VII	1a	26	3	7	5	8	12			
VIII	16	2a	6	4	11	9	12			

Комплексные соединения

№ варианта	Номер опыта									
I	1a	2б	3	4a	4б	4Γ	5			
II	1б	2a	3	4a	4в	4e	6			
III	1a	2б	3	4a	4д	4Γ	7			
IV	1б	2a	3	4a	4б	4e	5			
V	1a	2б	3	4a	4в	4Γ	6			
VI	1б	2a	3	4a	4д	4e	7			
VII	1a	2б	3	4a	4б	4Γ	5			
VIII	16	2a	3	4a	4в	4e	7			

Углерод, кремний и их соединения

№ варианта		Номер опыта											
I	1a	3a	36	4a	46	5(1)	6a(1)	6б(1)	7	9a			
II	1б	3a	3в	4в	4б	5(2)	6a(2)	6б(2)	10	9б			
III	2	3a	3г	4a	4б	5(3)	6a(3)	66(3)	8a	9a			
IV	1a	3a	3д	4 _B	4б	5(1)	6a(4)	6б(4)	8б	9б			
V	1б	3a	36	4a	4б	5(2)	6a(1)	6б(1)	8в	10			
VI	1a	3a	3в	4 _B	4б	5(3)	6a(2)	66(2)	8a	9a			
VII	16	3a	3г	4a	4б	5(1)	6a(3)	6б(3)	8б	9б			
VIII	1a	3a	3д	4в	46	5(2)	6a(4)	6б(4)	8в	9a			

Опыты 2, 7, выполняются как демонстрационные.

Олово, свинец и их соединения

№ варианта	Номер опыта									
I	1	2(1)	6a	8	9(1)	10	12a			
II	3	2(2)	6б	8	9(2)	11	126			
III	5	2(3)	6a	8	9(1)	10	12a			
IV	7	2(4)	6б	8	9(2)	11	12б			
V	1	2(1)	6a	8	9(1)	10	12a			
VI	3	2(2)	6б	8	9(2)	11	12б			
VII	4	2(3)	6a	8	9(1)	10	12a			
VIII	7	2(4)	6б	8	9(2)	11	126			

Опыт 4 выполняется как демонстрационный.

Бор, алюминий и их соединения

№ варианта	Номер опыта										
I	1a	1г	2a	3	6a	7a	7в	8a			
II	1б	1д	2б	4	6б(1)	7a	7б	8б			
III	1в	1e	2в	5	66(2)	7a	7в	8в			
IV	1a	1г	2г	3	66(3)	7a	7б	8г			
V	1б	1д	2a	4	6в	7a	7в	8a			
VI	1в	1e	2б	5	6б(1)	7a	7б	8б			
VII	1a	1г	2в	3	66(2)	7a	7в	8в			
VIII	1б	1e	2г	4	66(3)	7a	7б	8г			

s-элементы

№ варианта			Н	омер опы	та		
I	1a	3(1)	4	7б	9a	13a	136
II	1б	3(2)	4	8a	9б	13a	13в
III	2(1)	3(3)	4	8б	12a	13a	13г
IV	2(2)	3(4)	4	8в	126	13a	136
V	2(3)	3(5)	4	7б	12в	13a	13в
VI	10	3(6)	4	8a	12г	13a	13г
VII	7a	3(7)	4	8б	9a	13a	136
VIII	16	3(1)	4	8в	126	13a	13в

Хром и его соединения

№ варианта				Н	омер опы	та			
I	1a	16(1)	3a	4a	5a	5б	6	8a(1)	8б
II	1a	16(2)	3б(1)	4б	5a	5в	7б(1)	8a(2)	8в
III	2a	26	3в	4a	5a	5б	7б(2)	8a(3)	8б
IV	1a	1 ₀ (1)	3б(2)	4б	5a	5в	7б(3)	8a(4)	8в
V	1a	16(2)	3a	4a	5a	5б	6	8a(1)	8б
VI	2a	2б	3в	4б	5a	5в	7б(1)	8a(2)	8в
VII	1a	16(1)	3б(1)	4a	5a	5б	7б(2)	8a(3)	8б
VIII	1a	16(2)	36(2)	46	5a	5в	76(3)	8a(4)	8в

Марганец и его соединения

№ варианта				Н	омер опы	та			
I	1a	1б	2a	3	5a	6	7a(1)	7б(1)	7в(1)
II	1a	1в	2б	4	56(1)	7д	7a(2)	76(2)	7в(2)
III	1a	1г	2a	3	56(2)	7г	7a(3)	7б(3)	7в(3)
IV	1a	1б	2б	4	56(3)	6	7a(4)	7б(4)	7в(4)
V	1a	1в	2a	3	5a	7д	7a(1)	7 б(1)	7в(1)
VI	1a	1г	2б	4	5 ₆ (1)	7г	7a(2)	7б(2)	7в(2)
VII	1a	1б	2a	3	56(2)	6	7a(3)	7б(3)	7в(3)
VIII	1a	1в	26	4	56(3)	7д	7a(4)	7б(4)	7в(4)

Железо, кобальт, никель и их соединения

№ варианта						Но	омер о	пыта				
I	1	2(1)	4a	6a	7	9a	10	11(1)	12a	13a	14	16a
II	3	2(2)	4б	6б	7	9б	10	11(2)	126	13б	15	16б
III	5	2(3)	8a	6a	7	9в	10	11(3)	12a	17	18	19
IV	1	2(4)	8б	6б	7	9a	10	11(4)	126	17	14	16a
V	3	2(1)	4a	6a	7	9б	10	11(1)	12a	13a	15	16б
VI	5	2(2)	4б	6б	7	9в	10	11(2)	12б	136	18	19
VII	1	2(3)	8a	6a	7	9a	10	11(3)	12a	17	14	16a
VIII	3	2(4)	8б	6б	7	9б	10	11(4)	126	17	15	16б

Медь, серебро и их соединения

№ варианта				Номер	опыта			
I	1	2a(1)	Заб	4a	5	6	8a	9
II	26	2a(2)	3в	4б	5	7	86(1)	10a
III	1	2a(3)	Заб	11	5	6	8 ₆ (2)	10б
IV	2б	2a(4)	3в	4a	5	7	8a	9
V	1	2a(1)	Заб	4б	5	6	8 б (1)	10a
VI	2б	2a(2)	3в	11	5	7	8 ₆ (2)	10б
VII	1	2a(3)	Заб	4a	5	6	8a	9
VIII	2б	2a(4)	3в	4б	5	7	8 ₆ (1)	10a

Цинк, кадмий, ртуть и их соединения

№ варианта			Но	мера опы	тов		
I	1(1)	2	3	10	6a	12	14
II	1(2)	7	8	5	6б	12	16
III	1(3)	13a	4	10	11a	12	17a
IV	1(4)	136	9	5	116	12	176
V	1(1)	2	3	10	15a	12	14
VI	1(2)	7	8	5	15б	12	16
VII	1(3)	13a	4	10	15a	12	17a
VIII	1(4)	136	9	5	15б	12	17б

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. Абрамычева Н.Л. Практикум по общей химии [Электронный ресурс]: учебное пособие / Н.Л. Абрамычева, Л.М. Азиева, О.В. Архангельская. Электрон. текстовые данные.— М.: Московский гос. ун-т им. М.В. Ломоносова, 2005. 336 с. Режим доступа: http://www.iprbookshop.ru/13106.—ЭБС «IPRbooks».
- 2. Аликберова Л.Ю. Практикум по общей и неорганической химии: учеб. пособие для студ. высш. учеб. заведений / Л.Ю. Аликберова, Р.А. Лидин, В.А. Молочко [и др.]. М.: Владос, 2004. 320 с.
- 3. Ахметов Н.С. Общая и неорганическая химия: учебник / Н.С. Ахметов СПб.: Лань, 2014. 752 с.
- 4. Воробьев А.Ф. Практикум по неорганической химии / А.Ф. Воробьев, С.И. Дракин. М.: АЛЬЯНС, 2004. 249 с.
- 5. Воскресенский П.И. Техника лабораторных работ / П.И. Воскресенский. М.: Химия, 1973. 717 с.
- 6. Захаров Л.Н. Начала техники лабораторных работ / Л.Н. Захаров.— Л.: Химия, 1981. 192 с.
- 7. Карапетьянц М.Х. Общая и неорганическая химия / М.Х. Карапетьянц, С.И. Дракин. М.: Химия, 2000.
- 8. Коровин Н.В. Общая химия / Н.В. Коровин. М.: Высш. шк., 2007. 557 с.
- 9. Костоусова О.Ю. Лабораторный практикум по общей химии / О.Ю. Костроусова, Л.С. Малофеева. М.: Форум, 2008. 143 с.
- 10. Краткий справочник физико-химических величин. / под ред. А.А. Равделя и А.М. Пономаревой. СПб.: Специальная литература, 1999.
- 11. Лидин Р.А. Константы неорганических веществ: Справочник по неорганической химии. / Р.А. Лидин, Л.Л. Андреева, В.А. Молочко; под ред. Р.А. Лидина. М.: Химия, 1996.
- 12. Лидин Р.А. Справочник по общей и неорганической химии / Р.А. Лидин. М.: Просвещение: уч. лит., 1997.
- 13. Маренкова Л.И. Руководство к лабораторно-практическим занятиям по общей химии [Электронный ресурс]: учебное пособие для студентов/ Л.И. Маренкова, О.И. Бибик, Н.Г. Демидова. Кемерово: Кемеровская гос. мед. академия, 2008. Режим доступа: http://www.iprbookshop.ru/6210. ЭБС «IPRbooks».
- 14. Некоторые вопросы общей химии: методические рекомендации / сост. Н.А. Бахарев [и др.]. Челябинск: ЧГПУ, 2006. 115 с.

- 15. Павлов Н.Н. Общая и неорганическая химия [Текст] учебник для вузов / Н.Н. Павлов. Изд. 3-е, испр. и доп. СПб.: Лань, 2011.
- 16. Практикум по неорганической химии: учеб. пособие для студ. пед. ин-тов / Л.В. Бабич, С.А. Балезин, Ф.Б. Гликина [и др.]. 4-е изд. перераб. М.: Просвещение, 1991.
- 17. Пресс И.А. Основы общей химии [Электронный ресурс]: учебное пособие / И.А. Пресс. СПб.: ХИМИЗДАТ, 2014. 352 с. Режим доступа: http://www.iprbookshop.ru/22542. ЭБС «IPRbooks».
- 18. Рабинович В.А. Краткий химический справочник / В.А. Рабинович, З.Я. Хавин. Л.: Химия, Ленинградское отделение, 1991.
- 19. Свердлова Н.Д. Общая и неорганическая химия: Экспериментальные задачи и упражнения: учеб. пособие / Н.Д. Свердлова. СПб.: Лань, 2013. 352 с.
- 20. Справочные материалы по химии / сост. Е.Г. Турбина, В.А. Сычев, С.Г. Левина [и др.]. изд. 2-е, испр. и доп. Челябинск: Изд-во ЧГПУ, 2004. 140 с.
- 21. Угай Я.А. Общая и неорганическая химия / Я.А. Угай. М.: Высш. шк., 2007. 356 с.
- 22. Юстратов В.П. Лабораторный практикум по неорганической химии [Электронный ресурс] / В.П. Юстратов, Л.А. Сенчурова, И.В. Проскунов. Кемерово: Кемеровский технолог. ин-т пищевой промышленности, 2007. 106 с. Режим доступа: http://www.iprbookshop.ru/14371.—ЭБС «IPRbooks».

ОГЛАВЛЕНИЕ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	3
ЛАБОРАТОРНЫЙ ПРАКТИКУМ	
ГАЛОГЕНЫ И ИХ СОЕДИНЕНИЯ	5
Хлор и хлороводород	
1. Получение хлора	5
2. Взаимодействие хлора с металлами	6
3. Взаимодействие хлора с неметаллами	7
4. Взаимодействие хлора с органическими веществами	8
5. Хлорная вода и ее свойства	8
Кислородные соединения хлора	
6. Свойства хлорной (белильной) извести	10
7. Свойства хлората калия	12
8. Окислительные свойства хлорноватой кислоты	13
Бром, иод и их соединения	
9. Получение брома и иода	13
10. Свойства брома	15
11. Свойства иода	16
12. Действие хлорной воды на смесь растворов иодида калия и бромида калия.	17
13. Водородные соединения брома и иода	18
14. Восстановительные свойства галогеноводородов	19
15. Реакции на галогенид-ионы	20
16. Соли бромноватистой кислоты	21
17. Окислительные свойства бромноватой кислоты	21
СЕРА И ЕЕ СОЕДИНЕНИЯ	22
Сера. Сероводород. Сульфиды	
1. Взаимодействие серы с металлами	22
2. Свойства сероводородной воды	23
3. Восстановительные свойства сероводорода	24
4. Получение и свойства сульфидов металлов	
5. Гидролиз сульфидов	25
6. Получение полисульфидов	26
Кислородные соединения серы	
7. Получение оксида серы (IV)	27
8. Свойства оксида серы (IV)	28
9. Окислительные и восстановительные свойства оксида серы (IV)	
и сернистой кислоты	29
10. Обесцвечивание фуксина сернистой кислотой	31
11. Реакция на H ₂ SO ₃ и ее соли	31
12. Свойства серной кислоты	32
13. Реакция на сульфат-ион	36
14. Свойства тиосульфата натрия	36
АЗОТ И ЕГО СОЕДИНЕНИЯ	37
Азот и его водородные соединения	
1. Получение аммиака	37
2. Свойства аммиака	38
3. Реакция на ион аммония	40
4. Термическое разложение солей аммония	40
5. Возгонка хлорида аммония	42
6. Свойства гидразина и гидроксиламина	42

	ные соединения азота
	тучение и свойства оксида азота (I)
8. Пол	тучение оксида азота (II) 4
	ойства оксида азота (II)
10. По	олучение оксида азота (IV)
	зойства оксида азота (IV)
12. Oi	кислительные и восстановительные свойства азотистой кислоты
13. По	олучение нитрита калия 2
14. C	войства азотной кислоты
15. Pa	зложение нитратов при нагревании
ФОСФОР И	ЕГО СОЕДИНЕНИЯ
1. Алл	потропия фосфора (получение белого фосфора)
	тучение оксида фосфора (V) (фосфорного ангидрида) 5
3. Pea	кции на ионы фосфорных кислот
4. Пол	тучение фосфорных кислот 5
	ии ортофосфорной кислоты5
	тучение и свойства галогенидов фосфора
	СУРЬМА, ВИСМУТ И ИХ СОЕДИНЕНИЯ
	ойства солей мышьяковистой кислоты
	тучение и свойства мышьяковой кислоты и ее солей 6
	тучение и свойства гидроксида сурьмы (III)
	естановительные свойства тетрагидроксостибата (III) натрия 6
	дролиз солей сурьмы (III)
	тучение сурьмяной кислоты и ее свойства
	ислительные свойства соединений сурьмы (V)
	имодействие металлического висмута с растворами кислот
	тучение оксида висмута (III)
	олучение и свойства гидроксида висмута (III)
10. Γκ 11. Γν	идролиз солей висмута (III)
	кислительные свойства висмутатов
	СНЫЕ СОЕДИНЕНИЯ
	разование и диссоциация соединений с комплексным катионом
	разование и диссоциация соединений с комплексным катионом
_	личие между простыми и комплексными ионами железа (III)
	очность и разрушение комплексных ионов
	ссоциация двойной соли
	ияние концентрации раствора на комплексообразование
	1
,	СРЕМНИЙ И ИХ СОЕДИНЕНИЯ
Углерод	500000000000000000000000000000000000000
	сорбционная способность древесного угля
	сстановительные свойства угля
	тучение и свойства оксида углерода (IV)
-	разование солей угольной кислоты
	пролиз солей угольной кислоты
	ойства солей угольной кислоты
-	и его соединения
	тучение аморфного кремния и силанов
	тучение кремниевой кислоты 8
	дролиз солей кремниевой кислоты
10 Pr	инепанирание стемпа

1. Получение олова 82 2. Взаимодействие олова и свинца с ицелочами 82 3. Взаимодействие олова и свинца со целочами 83 4. Образоващие гидрида олова 83 5. Получение и свойства гидроксида олова (II) 84 6. Оловяные кислоты и их свойства 84 7. Гидролиз хлорида олова (II) 85 8. Восстановительные свойства Sn²* 86 9. Получение сульфидов олова 86 10. Иолучение сульфидов олова 86 11. Обларужение и оново Ръ² в растворе 87 12. Свойства оксида свинца (IV) 88 БОР, АЛОМИНИЙ ИХ СОСДИНЕНИЯ 89 1. Ортоборная кислота: ее получение и свойства 89 2. Свойства солей борных кислот 91 3. Взаимодействие алюминия с кислогоми 91 4. Взаимодействие алюминия с кислогами 93 5. Взаимодействие алюминия с меслорочами 93 6. Взаимодействие алюминия с кислогами 93 7. Получение гидроксида алюминия 93 8. Тидролиз солей алюминия 96 8. Тидролиз солей алюминия 96 8. Тидролиз солей шелочных металлов с водой 96 8. Тидр	ОЛОВО, СВИНЕЦ И ИХ СОЕДИНЕНИЯ	82
2. Взаимодействие олова и свинца с кислотами 3. Заимодействие олова и свинца со пјелочами 3. 4. Образование гидрроксида олова (II) 8. 4. 6. Оловлишъс кислоты и их свойства 5. Получение и свойства гидроксида олова (II) 8. 8. 6. Оловлишъс кислоты и их свойства 7. Гидролиз хлорида олова (II) 8. 8. Восстановительные свойства Sn² 8. 8. Восстановительные свойства Sn² 8. 6. Получение и свойства гидроксида свинца (II) 8. 7. Получение и свойства гидроксида свинца (II) 8. 7. 11. Обнаружение ионов Ръ² в растворе 8. 7. 12. Свойства оксида свинца (IV) 8. 8. Восможна свинца (IV) 8. 8. БОР, Алюминий и их Соединения 1. Оргоборная кислота: ее получение и свойства 8. 2. Свойства сожей борных кислот 9. 2. Свойства сожей борных кислот 9. 3. Взаимодействие алюминия с кислородом 9. 4. Взаимодействие алюминия с кислородом 9. 5. Взаимодействие алюминия с кислотами 9. 3. Получение гидроксида алюминия и исследование его свойств 9. 5. Взаимодействие алюминия и исследование его свойств 9. 5. Взаимодействие алюминия и исследование его свойств 9. 5. Взаимодействие и пильния и истрафина пременения 1. Взаимодействие и пильния и патрия с кислородом воздуха 9. В и продолиз солей алюминия 1. Взаимодействие шелочных металлов с водой 1. 0. 3. Гидролиз солей шелочных металлов с водой 1. 0. 4. Окращивание пламсти солями шелочных и шелочнохмельных металлов 10. 4. Окращивание пламсти солями шелочных и шелочноземельных металлов 10. Взаимодействие натрия с серой 10. Взаимодействие натри с серой пременения 10. Восстановительные свойства состановими метальных металлов 10. Взаимодействие и свойства осей шелочноземельных м		82
3. Взаимодействие олова и свища со щелочами 4. Образование гидрида олова 5. Получение и свойства гидроксида олова (II) 6. Оловянные кислоты и их свойства 7. Гидролиз хлорида олова (II) 8. 8. Восстановительные свойства Sn² 8. Восстановительные свойства Sn² 8. Восстановительные свойства Sn² 8. Восстановительные сульфидов олова 10. Получение и свойства Гидроксида свинца (II) 87. 11. Обнаружение и овой Рв² в растворе 87. 12. Свойства оксида свинца (IV) 88. Восуль Сорфини и свойства и прироксида свинца (II) 89. 1. Ортоборная кислота: се получение и свойства 89. 2. Свойства солей борных кислот 91. 3. Взаимодействие агломиния с кислородом 91. 4. Взаимодействие агломиния с кислородом 92. 5. Взаимодействие агломиния с водой 92. 5. Взаимодействие агломиния с вислородом 93. Тидролиз солей агломиния и исследование его свойств 95. В Гидролиз солей агломиния и исследование его свойств 96. З-элементы 11. Взаимодействие пития и натрия с кислородом воздуха 99. Взаимодействие пития и натрия с кислородом воздуха 10. Взаимодействие пелочных металлов с водой 10. 3. Гидролиз солей пелочных металлов с водой 10. 4. Окращивание пламени содями пелочных и пелочных и пелочных и пелочных и пелочных металлов 10. Взаимодействие натрия с раствором сульфата меди (II) 10. Взаимодействие натрия с раствором сульфата меди (II) 10. Взаимодействие натрия с серой 10. Взаимодействие натрия с серой 10. Взаимодействие и свойства оксида и гидроксида матния 10. Восстановительные свойства капьция 10. Восстановительные свойства косида и гидроксида матния 10. Восстановительные свойства капьция 10. Восстановительные свойства солей пелочноземельных металлов 10. Получение и свойства солей пелочноземельных металлов 10. 11. Получение и свойства оксида и гидроксида матния металлов 10. 12. Получение и свойства сосей пелочноземельных металлов 10. 13. Жесткость воды и ее устранение 11. Получение и свойст		82
4. Образование гидрида олова 83 5. Получение и свойства гидроксида олова (II) 84 6. Оловянные кислоты и их свойства 84 7. Гидролиз хлорида олова (II) 85 8. Восстановительные свойства Sn²¹ 86 9. Получение и свойства гидроксида свинца (II) 87 11. Обнаружение и свойства гидроксида свинца (II) 87 12. Свойства оксида свинца (IV) 88 Бор, алюминий и их соединения 89 1. Ортоборная кислота: ее получение и свойства 89 2. Свойства солей борных кислот 91 3. Взаимодействие алюминия с вислородом 91 4. Взаимодействие алюминия с вислорами 93 6. Взаимодействие алюминия с вислочами 93 7. Получение гидроксида алюминия 93 8. Гидролиз солей алюминия 96 8-3-ливенты 99 11 Пелочение пидроксида инфиния 96 8-3-лимодействие пидроксида инфиния 96 8-3-лимодействие пидроксида инфиния 97 8. Гидролиз солей алюминия 92 8. Взаимодействие пидроксида инфиним сталлов с водой 92 9-3. Взаимодействие пидроксида 99 <td< td=""><td></td><td>83</td></td<>		83
5. Получение и свойства гидроксида олова (II) 84 6. Оловянные кислоты и их свойства 84 7. Гидролия хлорида олова (II) 85 8. Восстановительные свойства Sn²¹ 86 9. Получение сульфидов олова 86 10. Получение и свойства гидроксида свинца (II) 87 11. Обларужение и опов Pb²* в растворе 87 12. Свойства оксида свинца (IV) 88 БОР, Алюминий и их Соединения 89 1. Ортоборная кислота: ее получение и свойства 89 2. Свойства солей боршых кислот 91 3. Взаимодействие алюминия с вислородом 91 4. Взаимодействие алюминия с в сислородом 92 5. Взаимодействие алюминия с о щелочами 93 6. Взаимодействие алюминия с о шелочами 93 7. Получение гидроксида алюминия 96 85-Элементы 96 85-Элементы 97 10. Оночные металлы и их соединения 99 11. Взаимодействие пития и натрия с кислородом воздуха 99 2. Взаимодействие шелочных металлов с водой 100 3. Гидролиз солей щелочных металлов с водой 100 3. Гидролиз солей щелочных металлов 101 <		83
6. Оловянные кислоты и их свойства 7. Гидролиз хлорида олова (II) 85 8. Восстановительные свойства Sn² 9. Получение сульфилов олова 10. Получение и свойства гидроксида свинца (II) 87 11. Обнаружение инове Pb³ в растворе 12. Свойства оксида свинца (IV) 88 60р, Алюминий и их соединения 89 12. Свойства солей борных кислот 91 13. Взаимодействие алюминия с кислородом 91 4. Взаимодействие алюминия с кислородом 91 4. Взаимодействие алюминия с кислородом 91 5. Взаимодействие алюминия с кислородом 91 6. Взаимодействие алюминия с кислородом 93 7. Получение и дроксида алюминия и исследование его свойств 95 8. Гидролиз солей алюминия и исследование его свойств 96 8-ЭЛЕМЕНТЫ 11. Взаимодействие алюминия и исследование его свойств 97 98 8-Замодействие алюминия 11. Взаимодействие и питам и натрия с кислородом воздуха 99 12. Взаимодействие питам и натрия с кислородом воздуха 99 13. Взаимодействие пременых металлов с водой 100 13. Гидролиз солей щелочных металлов с водой 101 14. Окрашивание пламени солями щелочных и нелочноземельных металлов 101 15. Взаимодействие натрия с серой 102 Магний и сго соединения 10. Восстановительные свойства металлического магния 10. Востановительные свойства металлического магния 10. Востановительные свойства металлического магния 10. Востановительные свойства металлиния 10. Востановительные свойства металлиния 10. Востановительные свойства от питам петалического магния 10. Востановительные объйства металического магния 10. Востановительные объйства металиния 10. Востановительные свойства от питамения 10. Востановительные свойства от питамения 10. Востановительные свойства металиния 10. Востановительные свойства от питамения 10. Востановительные свойства металиния 10. Востановительные свойства от питамения 10. Востановительные свойства питамения 10. Востановительные свойства питамения 10. Востановительные свойства металического магния 10. Востановительные свойства питамен	<u>.</u>	84
8. Тидролиз хлорида олова (II) 85 8. Восстановительные свойства Sn²* 86 9. Получение и свойства гидроксида свинца (II) 87 11. Обнаружение и онов Pb²* в растворе 87 12. Съойства оксида свища (IV) 88 БОР, Алюминий и их СОЕДИНЕНИЯ 89 1. Ортоборная кислота: се получение и свойства 89 2. Съойства ослей борных кислот 91 3. Взаимодействие алюминия с кислородом 91 4. Взаимодействие алюминия с кислородом 91 4. Взаимодействие алюминия с кислотами 93 5. Взаимодействие алюминия с кислотами 93 6. Взаимодействие алюминия с кислотами 93 7. Получение гидроксида анюминия и исследование его свойств 95 8. Гидролиз солей алюминия 99 9. Взаимодействие пития и натрия с кислородом воздуха 99 1. Взаимодействие пития и натрия с кислородом воздуха 99 2. Взаимодействие пития и натрия с кислородом воздуха 100 3. Гидролиз солей шелочных металлов 101 4. Окрашивание пламени солями щелочных и шелочноземельных металлов 101 4. Окрашивание пламени солями щелочных и шелочноземельных металлов 102		

4. Получение манганата калия 1
5. Свойства соединений марганца (VI) 1
6. Разложение перманганата калия при нагревании
7. Окислительные свойства перманганата калия
железо, кобальт, никель и их соединения
1. Коррозия железа при контакте его с цинком и оловом
2. Взаимодействие железа с кислотами 1
3. Пассирование и оксидирование железа
4. Получение гидроксида железа (II) и его свойства
5. Гидролиз солей железа (II)
6. Получение солей железа (II) 1
7. Реакция на ион Fe ²⁺ 1
8. Получение и свойства гидроксида железа (III)
9. Гидролиз солей железа (III) 1
10. Реакция на ион Fe ³⁺
11. Окисление соединений железа (II)
12. Восстановление соединения железа (III)
13. Получение гидроксида кобальта (II) и его свойства
13. Получение гидроксида кооальта (п) и его свойства
18. Получение гидроксида никеля (III) и его свойства
19. Получение аммиаката никеля (II)
медь, серебро и их соединения
1. Получение меди восстановлением ионов из раствора ее солей
2. Свойства меди
3. Получение и свойства гидроксида меди (II)
4. Гидролиз солей меди (II)
5. Получение и свойства комплексной соли меди (II)
6. Получение гидроксида и оксида меди (I)
7. Получение иодида меди (I)
8. Получение серебра 1
9. Получение оксида серебра
10. Галогениды серебра
11. Реакция раствора нитрата серебра
цинк, кадмий, ртуть и их соединения
1. Взаимодействие цинка с кислотами
2. Взаимодействие цинка со щелочами
3. Получение и свойства гидроксида цинка
4. Получение сульфида цинка
5. Комплексные соединения цинка
6. Гидролиз солей цинка 1
7. Получение кадмия восстановлением его ионов из раствора
8. Получение и свойства гидроксида кадмия 1
9. Получение и свойства сульфида кадмия 1
10. Комплексные соединения кадмия
11. Гидролиз солей кадмия 1
12. Разделение ионов Zn ²⁺ и Cd ²⁺
Ртуть и ее соединения
13. Получение ртути
14. Получение оксила ртути (II) и его свойства

15. Гидролиз солей ртути (II)	154
16. Получение оксида ртути (I)	155
17. Получение каломели	155
ЗАДАНИЯ ДЛЯ ВНЕАУДИТОРНОЙ РАБОТЫ СТУДЕНТОВ	
Тема 1. Галогены	156
Тема 2. р-элементы VI группы	159
Тема 3. Азот и его соединения	163
Тема 4. Фосфор	166
Тема 5. Мышьяк. Сурьма. Висмут	169
Тема б. Комплексные соединения	172
Тема 7. Углерод. Кремний	177
Тема 8. Германий. Олово. Свинец	180
Тема 9. Бор. Алюминий	183
Тема 10. Щелочные и щелочно-земельные металлы. Жесткость воды	186
Тема 11. d—элементы VI группы	188
Тема 12. d-элементы VII группы	192
Тема 13. Железо. Кобальт. Никель	195
Тема 14. d-элементы I группы	199
Тема 15. d-элементы II группы	200
Коллоквиум Общие закономерности периодической системы. Свойства элементов	200
Trossionality of Committee Sanonomephoeth hephogh recent energians. Choneran Siementon	
	206
главных подгрупп	
главных подгрупп	
главных подгрупп	207
главных подгрупп	207
ТАБЛИЦА ВАРИАНТОВ РАБОТ ПО ТЕМАМ Галогены и их соединения. Хлор и хлороводород. Кислородные соединения хлора. Бром, иод и их соединения Сера и ее соединения. Сера. Сероводород. Сульфиды. Кислородные соединения серы. Азот и его соединения. Азот и его водородные соединения.	207
ТАБЛИЦА ВАРИАНТОВ РАБОТ ПО ТЕМАМ Галогены и их соединения. Хлор и хлороводород. Кислородные соединения хлора. Бром, иод и их соединения Сера и ее соединения. Сера. Сероводород. Сульфиды. Кислородные соединения серы. Азот и его соединения. Азот и его водородные соединения. Кислородные соединения азота	207 207 208
главных подгрупп	207 207 208 209
ТАБЛИЦА ВАРИАНТОВ РАБОТ ПО ТЕМАМ Галогены и их соединения. Хлор и хлороводород. Кислородные соединения хлора. Бром, иод и их соединения Сера и ее соединения. Сера. Сероводород. Сульфиды. Кислородные соединения серы. Азот и его соединения. Азот и его водородные соединения. Кислородные соединения азота Фосфор и его соединения Мышьяк, сурьма, висмут и их соединения	207 207 208 209 209
ТАБЛИЦА ВАРИАНТОВ РАБОТ ПО ТЕМАМ Галогены и их соединения. Хлор и хлороводород. Кислородные соединения хлора. Бром, иод и их соединения Сера и ее соединения. Сера. Сероводород. Сульфиды. Кислородные соединения серы. Азот и его соединения. Азот и его водородные соединения. Кислородные соединения азота Фосфор и его соединения Мышьяк, сурьма, висмут и их соединения Комплексные соединения	207 207 208 209 209 209
ТАБЛИЦА ВАРИАНТОВ РАБОТ ПО ТЕМАМ Галогены и их соединения. Хлор и хлороводород. Кислородные соединения хлора. Бром, иод и их соединения Сера и ее соединения. Сера. Сероводород. Сульфиды. Кислородные соединения серы. Азот и его соединения. Азот и его водородные соединения. Кислородные соединения азота Фосфор и его соединения Мышьяк, сурьма, висмут и их соединения Комплексные соединения Углерод, кремний и их соединения.	207 207 208 209 209 209 210
ТАБЛИЦА ВАРИАНТОВ РАБОТ ПО ТЕМАМ Галогены и их соединения. Хлор и хлороводород. Кислородные соединения хлора. Бром, иод и их соединения Сера и ее соединения. Сера. Сероводород. Сульфиды. Кислородные соединения серы. Азот и его соединения. Азот и его водородные соединения. Кислородные соединения азота Фосфор и его соединения Мышьяк, сурьма, висмут и их соединения Комплексные соединения Углерод, кремний и их соединения. Олово, свинец и их соединения	207 208 209 209 210 210
ТАБЛИЦА ВАРИАНТОВ РАБОТ ПО ТЕМАМ Галогены и их соединения. Хлор и хлороводород. Кислородные соединения хлора. Бром, иод и их соединения. Сера и ее соединения. Сера. Сероводород. Сульфиды. Кислородные соединения серы. Азот и его соединения. Азот и его водородные соединения. Кислородные соединения азота. Фосфор и его соединения Мышьяк, сурьма, висмут и их соединения. Комплексные соединения. Углерод, кремний и их соединения. Олово, свинец и их соединения. Бор, алюминий и их соединения.	207 208 209 209 210 210 210
ТАБЛИЦА ВАРИАНТОВ РАБОТ ПО ТЕМАМ Галогены и их соединения. Хлор и хлороводород. Кислородные соединения хлора. Бром, иод и их соединения. Сера и ее соединения. Сера. Сероводород. Сульфиды. Кислородные соединения серы. Азот и его соединения. Азот и его водородные соединения. Кислородные соединения азота Фосфор и его соединения Мышьяк, сурьма, висмут и их соединения Комплексные соединения Углерод, кремний и их соединения. Олово, свинец и их соединения Бор, алюминий и их соединения s-элементы	207 208 209 209 210 210 210 211
ТАБЛИЦА ВАРИАНТОВ РАБОТ ПО ТЕМАМ Галогены и их соединения. Хлор и хлороводород. Кислородные соединения хлора. Бром, иод и их соединения Сера и ее соединения. Сера. Сероводород. Сульфиды. Кислородные соединения серы. Азот и его соединения. Азот и его водородные соединения. Кислородные соединения азота Фосфор и его соединения Мышьяк, сурьма, висмут и их соединения Комплексные соединения Углерод, кремний и их соединения. Олово, свинец и их соединения Бор, алюминий и их соединения хром и его соединения	207 208 209 209 210 210 211 211
ТАБЛИЦА ВАРИАНТОВ РАБОТ ПО ТЕМАМ Галогены и их соединения. Хлор и хлороводород. Кислородные соединения хлора. Бром, иод и их соединения Сера и ее соединения. Сера. Сероводород. Сульфиды. Кислородные соединения серы. Азот и его соединения. Азот и его водородные соединения. Кислородные соединения азота Фосфор и его соединения Мышьяк, сурьма, висмут и их соединения Комплексные соединения Углерод, кремний и их соединения. Олово, свинец и их соединения Бор, алюминий и их соединения хром и его соединения Хром и его соединения Марганец и его соединения	207 208 209 209 210 210 211 211 211
ТАБЛИЦА ВАРИАНТОВ РАБОТ ПО ТЕМАМ Галогены и их соединения. Хлор и хлороводород. Кислородные соединения хлора. Бром, иод и их соединения Сера и ее соединения. Сера. Сероводород. Сульфиды. Кислородные соединения серы. Азот и его соединения. Азот и его водородные соединения. Кислородные соединения азота Фосфор и его соединения Мышьяк, сурьма, висмут и их соединения Комплексные соединения Углерод, кремний и их соединения. Олово, свинец и их соединения Бор, алюминий и их соединения хром и его соединения Марганец и его соединения Марганец и его соединения Железо, кобальт, никель и их соединения	207 208 209 209 210 210 211 211 211 212
ТАБЛИЦА ВАРИАНТОВ РАБОТ ПО ТЕМАМ Галогены и их соединения. Хлор и хлороводород. Кислородные соединения хлора. Бром, иод и их соединения Сера и ее соединения. Сера. Сероводород. Сульфиды. Кислородные соединения серы. Азот и его соединения. Азот и его водородные соединения. Кислородные соединения азота Фосфор и его соединения Мышьяк, сурьма, висмут и их соединения Комплексные соединения Углерод, кремний и их соединения. Олово, свинец и их соединения Бор, алюминий и их соединения хром и его соединения Хром и его соединения Марганец и его соединения Железо, кобальт, никель и их соединения Медь, серебро и их соединения	207 208 209 209 210 210 211 211 212 212
ТАБЛИЦА ВАРИАНТОВ РАБОТ ПО ТЕМАМ Галогены и их соединения. Хлор и хлороводород. Кислородные соединения хлора. Бром, иод и их соединения Сера и ее соединения. Сера. Сероводород. Сульфиды. Кислородные соединения серы. Азот и его соединения. Азот и его водородные соединения. Кислородные соединения азота Фосфор и его соединения Мышьяк, сурьма, висмут и их соединения Комплексные соединения Углерод, кремний и их соединения. Олово, свинец и их соединения Бор, алюминий и их соединения хром и его соединения Марганец и его соединения Марганец и его соединения Железо, кобальт, никель и их соединения	206 207 208 209 209 210 210 211 211 212 212 213

Учебное издание

ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО ОБЩЕЙ И НЕОРГАНИЧЕСКОЙ ХИМИИ

РАБОЧАЯ ТЕТРАДЬ Часть II

Составитель

Карпенко Ирина Геннадьевна

ISBN 978-5-906908-49-0

Работа рекомендована РИСом университета. Протокол № 15 от 2017 г. Эксперт В.А. Сычев

Издательство ЮУрГГПУ 454080, г. Челябинск, пр. Ленина, 69

Редактор О.В. Угрюмова Компьютерная верстка О.М. Нежиренко

Бумага типографская Объем 7,2 уч.-изд. л Формат 60х84/8

Подписано в печать 14.03.2017 Тираж 100 экз. Заказ №

Отпечатано с готового оригинал-макета в типографии ЮУрГГПУ

454080, г. Челябинск, пр. Ленина, 69